root / src / blas / zhpmv.f @ 5
Historique | Voir | Annoter | Télécharger (8,02 ko)
1 |
SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE COMPLEX ALPHA,BETA |
4 |
INTEGER INCX,INCY,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX AP(*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHPMV performs the matrix-vector operation |
15 |
* |
16 |
* y := alpha*A*x + beta*y, |
17 |
* |
18 |
* where alpha and beta are scalars, x and y are n element vectors and |
19 |
* A is an n by n hermitian matrix, supplied in packed form. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the matrix A is supplied in the packed |
27 |
* array AP as follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' The upper triangular part of A is |
30 |
* supplied in AP. |
31 |
* |
32 |
* UPLO = 'L' or 'l' The lower triangular part of A is |
33 |
* supplied in AP. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - COMPLEX*16 . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* AP - COMPLEX*16 array of DIMENSION at least |
47 |
* ( ( n*( n + 1 ) )/2 ). |
48 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
49 |
* contain the upper triangular part of the hermitian matrix |
50 |
* packed sequentially, column by column, so that AP( 1 ) |
51 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
52 |
* and a( 2, 2 ) respectively, and so on. |
53 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
54 |
* contain the lower triangular part of the hermitian matrix |
55 |
* packed sequentially, column by column, so that AP( 1 ) |
56 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
57 |
* and a( 3, 1 ) respectively, and so on. |
58 |
* Note that the imaginary parts of the diagonal elements need |
59 |
* not be set and are assumed to be zero. |
60 |
* Unchanged on exit. |
61 |
* |
62 |
* X - COMPLEX*16 array of dimension at least |
63 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
64 |
* Before entry, the incremented array X must contain the n |
65 |
* element vector x. |
66 |
* Unchanged on exit. |
67 |
* |
68 |
* INCX - INTEGER. |
69 |
* On entry, INCX specifies the increment for the elements of |
70 |
* X. INCX must not be zero. |
71 |
* Unchanged on exit. |
72 |
* |
73 |
* BETA - COMPLEX*16 . |
74 |
* On entry, BETA specifies the scalar beta. When BETA is |
75 |
* supplied as zero then Y need not be set on input. |
76 |
* Unchanged on exit. |
77 |
* |
78 |
* Y - COMPLEX*16 array of dimension at least |
79 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
80 |
* Before entry, the incremented array Y must contain the n |
81 |
* element vector y. On exit, Y is overwritten by the updated |
82 |
* vector y. |
83 |
* |
84 |
* INCY - INTEGER. |
85 |
* On entry, INCY specifies the increment for the elements of |
86 |
* Y. INCY must not be zero. |
87 |
* Unchanged on exit. |
88 |
* |
89 |
* |
90 |
* Level 2 Blas routine. |
91 |
* |
92 |
* -- Written on 22-October-1986. |
93 |
* Jack Dongarra, Argonne National Lab. |
94 |
* Jeremy Du Croz, Nag Central Office. |
95 |
* Sven Hammarling, Nag Central Office. |
96 |
* Richard Hanson, Sandia National Labs. |
97 |
* |
98 |
* |
99 |
* .. Parameters .. |
100 |
DOUBLE COMPLEX ONE |
101 |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
102 |
DOUBLE COMPLEX ZERO |
103 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
104 |
* .. |
105 |
* .. Local Scalars .. |
106 |
DOUBLE COMPLEX TEMP1,TEMP2 |
107 |
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY |
108 |
* .. |
109 |
* .. External Functions .. |
110 |
LOGICAL LSAME |
111 |
EXTERNAL LSAME |
112 |
* .. |
113 |
* .. External Subroutines .. |
114 |
EXTERNAL XERBLA |
115 |
* .. |
116 |
* .. Intrinsic Functions .. |
117 |
INTRINSIC DBLE,DCONJG |
118 |
* .. |
119 |
* |
120 |
* Test the input parameters. |
121 |
* |
122 |
INFO = 0 |
123 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
124 |
INFO = 1 |
125 |
ELSE IF (N.LT.0) THEN |
126 |
INFO = 2 |
127 |
ELSE IF (INCX.EQ.0) THEN |
128 |
INFO = 6 |
129 |
ELSE IF (INCY.EQ.0) THEN |
130 |
INFO = 9 |
131 |
END IF |
132 |
IF (INFO.NE.0) THEN |
133 |
CALL XERBLA('ZHPMV ',INFO) |
134 |
RETURN |
135 |
END IF |
136 |
* |
137 |
* Quick return if possible. |
138 |
* |
139 |
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
140 |
* |
141 |
* Set up the start points in X and Y. |
142 |
* |
143 |
IF (INCX.GT.0) THEN |
144 |
KX = 1 |
145 |
ELSE |
146 |
KX = 1 - (N-1)*INCX |
147 |
END IF |
148 |
IF (INCY.GT.0) THEN |
149 |
KY = 1 |
150 |
ELSE |
151 |
KY = 1 - (N-1)*INCY |
152 |
END IF |
153 |
* |
154 |
* Start the operations. In this version the elements of the array AP |
155 |
* are accessed sequentially with one pass through AP. |
156 |
* |
157 |
* First form y := beta*y. |
158 |
* |
159 |
IF (BETA.NE.ONE) THEN |
160 |
IF (INCY.EQ.1) THEN |
161 |
IF (BETA.EQ.ZERO) THEN |
162 |
DO 10 I = 1,N |
163 |
Y(I) = ZERO |
164 |
10 CONTINUE |
165 |
ELSE |
166 |
DO 20 I = 1,N |
167 |
Y(I) = BETA*Y(I) |
168 |
20 CONTINUE |
169 |
END IF |
170 |
ELSE |
171 |
IY = KY |
172 |
IF (BETA.EQ.ZERO) THEN |
173 |
DO 30 I = 1,N |
174 |
Y(IY) = ZERO |
175 |
IY = IY + INCY |
176 |
30 CONTINUE |
177 |
ELSE |
178 |
DO 40 I = 1,N |
179 |
Y(IY) = BETA*Y(IY) |
180 |
IY = IY + INCY |
181 |
40 CONTINUE |
182 |
END IF |
183 |
END IF |
184 |
END IF |
185 |
IF (ALPHA.EQ.ZERO) RETURN |
186 |
KK = 1 |
187 |
IF (LSAME(UPLO,'U')) THEN |
188 |
* |
189 |
* Form y when AP contains the upper triangle. |
190 |
* |
191 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
192 |
DO 60 J = 1,N |
193 |
TEMP1 = ALPHA*X(J) |
194 |
TEMP2 = ZERO |
195 |
K = KK |
196 |
DO 50 I = 1,J - 1 |
197 |
Y(I) = Y(I) + TEMP1*AP(K) |
198 |
TEMP2 = TEMP2 + DCONJG(AP(K))*X(I) |
199 |
K = K + 1 |
200 |
50 CONTINUE |
201 |
Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2 |
202 |
KK = KK + J |
203 |
60 CONTINUE |
204 |
ELSE |
205 |
JX = KX |
206 |
JY = KY |
207 |
DO 80 J = 1,N |
208 |
TEMP1 = ALPHA*X(JX) |
209 |
TEMP2 = ZERO |
210 |
IX = KX |
211 |
IY = KY |
212 |
DO 70 K = KK,KK + J - 2 |
213 |
Y(IY) = Y(IY) + TEMP1*AP(K) |
214 |
TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX) |
215 |
IX = IX + INCX |
216 |
IY = IY + INCY |
217 |
70 CONTINUE |
218 |
Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2 |
219 |
JX = JX + INCX |
220 |
JY = JY + INCY |
221 |
KK = KK + J |
222 |
80 CONTINUE |
223 |
END IF |
224 |
ELSE |
225 |
* |
226 |
* Form y when AP contains the lower triangle. |
227 |
* |
228 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
229 |
DO 100 J = 1,N |
230 |
TEMP1 = ALPHA*X(J) |
231 |
TEMP2 = ZERO |
232 |
Y(J) = Y(J) + TEMP1*DBLE(AP(KK)) |
233 |
K = KK + 1 |
234 |
DO 90 I = J + 1,N |
235 |
Y(I) = Y(I) + TEMP1*AP(K) |
236 |
TEMP2 = TEMP2 + DCONJG(AP(K))*X(I) |
237 |
K = K + 1 |
238 |
90 CONTINUE |
239 |
Y(J) = Y(J) + ALPHA*TEMP2 |
240 |
KK = KK + (N-J+1) |
241 |
100 CONTINUE |
242 |
ELSE |
243 |
JX = KX |
244 |
JY = KY |
245 |
DO 120 J = 1,N |
246 |
TEMP1 = ALPHA*X(JX) |
247 |
TEMP2 = ZERO |
248 |
Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK)) |
249 |
IX = JX |
250 |
IY = JY |
251 |
DO 110 K = KK + 1,KK + N - J |
252 |
IX = IX + INCX |
253 |
IY = IY + INCY |
254 |
Y(IY) = Y(IY) + TEMP1*AP(K) |
255 |
TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX) |
256 |
110 CONTINUE |
257 |
Y(JY) = Y(JY) + ALPHA*TEMP2 |
258 |
JX = JX + INCX |
259 |
JY = JY + INCY |
260 |
KK = KK + (N-J+1) |
261 |
120 CONTINUE |
262 |
END IF |
263 |
END IF |
264 |
* |
265 |
RETURN |
266 |
* |
267 |
* End of ZHPMV . |
268 |
* |
269 |
END |