Statistiques
| Révision :

root / src / blas / ssymv.f @ 5

Historique | Voir | Annoter | Télécharger (7,58 ko)

1
      SUBROUTINE SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      REAL ALPHA,BETA
4
      INTEGER INCX,INCY,LDA,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      REAL A(LDA,*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  SSYMV  performs the matrix-vector  operation
15
*
16
*     y := alpha*A*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are n element vectors and
19
*  A is an n by n symmetric matrix.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the array A is to be referenced as
27
*           follows:
28
*
29
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30
*                                  is to be referenced.
31
*
32
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33
*                                  is to be referenced.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - REAL            .
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  A      - REAL             array of DIMENSION ( LDA, n ).
47
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
48
*           upper triangular part of the array A must contain the upper
49
*           triangular part of the symmetric matrix and the strictly
50
*           lower triangular part of A is not referenced.
51
*           Before entry with UPLO = 'L' or 'l', the leading n by n
52
*           lower triangular part of the array A must contain the lower
53
*           triangular part of the symmetric matrix and the strictly
54
*           upper triangular part of A is not referenced.
55
*           Unchanged on exit.
56
*
57
*  LDA    - INTEGER.
58
*           On entry, LDA specifies the first dimension of A as declared
59
*           in the calling (sub) program. LDA must be at least
60
*           max( 1, n ).
61
*           Unchanged on exit.
62
*
63
*  X      - REAL             array of dimension at least
64
*           ( 1 + ( n - 1 )*abs( INCX ) ).
65
*           Before entry, the incremented array X must contain the n
66
*           element vector x.
67
*           Unchanged on exit.
68
*
69
*  INCX   - INTEGER.
70
*           On entry, INCX specifies the increment for the elements of
71
*           X. INCX must not be zero.
72
*           Unchanged on exit.
73
*
74
*  BETA   - REAL            .
75
*           On entry, BETA specifies the scalar beta. When BETA is
76
*           supplied as zero then Y need not be set on input.
77
*           Unchanged on exit.
78
*
79
*  Y      - REAL             array of dimension at least
80
*           ( 1 + ( n - 1 )*abs( INCY ) ).
81
*           Before entry, the incremented array Y must contain the n
82
*           element vector y. On exit, Y is overwritten by the updated
83
*           vector y.
84
*
85
*  INCY   - INTEGER.
86
*           On entry, INCY specifies the increment for the elements of
87
*           Y. INCY must not be zero.
88
*           Unchanged on exit.
89
*
90
*
91
*  Level 2 Blas routine.
92
*
93
*  -- Written on 22-October-1986.
94
*     Jack Dongarra, Argonne National Lab.
95
*     Jeremy Du Croz, Nag Central Office.
96
*     Sven Hammarling, Nag Central Office.
97
*     Richard Hanson, Sandia National Labs.
98
*
99
*
100
*     .. Parameters ..
101
      REAL ONE,ZERO
102
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
103
*     ..
104
*     .. Local Scalars ..
105
      REAL TEMP1,TEMP2
106
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
107
*     ..
108
*     .. External Functions ..
109
      LOGICAL LSAME
110
      EXTERNAL LSAME
111
*     ..
112
*     .. External Subroutines ..
113
      EXTERNAL XERBLA
114
*     ..
115
*     .. Intrinsic Functions ..
116
      INTRINSIC MAX
117
*     ..
118
*
119
*     Test the input parameters.
120
*
121
      INFO = 0
122
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
123
          INFO = 1
124
      ELSE IF (N.LT.0) THEN
125
          INFO = 2
126
      ELSE IF (LDA.LT.MAX(1,N)) THEN
127
          INFO = 5
128
      ELSE IF (INCX.EQ.0) THEN
129
          INFO = 7
130
      ELSE IF (INCY.EQ.0) THEN
131
          INFO = 10
132
      END IF
133
      IF (INFO.NE.0) THEN
134
          CALL XERBLA('SSYMV ',INFO)
135
          RETURN
136
      END IF
137
*
138
*     Quick return if possible.
139
*
140
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
141
*
142
*     Set up the start points in  X  and  Y.
143
*
144
      IF (INCX.GT.0) THEN
145
          KX = 1
146
      ELSE
147
          KX = 1 - (N-1)*INCX
148
      END IF
149
      IF (INCY.GT.0) THEN
150
          KY = 1
151
      ELSE
152
          KY = 1 - (N-1)*INCY
153
      END IF
154
*
155
*     Start the operations. In this version the elements of A are
156
*     accessed sequentially with one pass through the triangular part
157
*     of A.
158
*
159
*     First form  y := beta*y.
160
*
161
      IF (BETA.NE.ONE) THEN
162
          IF (INCY.EQ.1) THEN
163
              IF (BETA.EQ.ZERO) THEN
164
                  DO 10 I = 1,N
165
                      Y(I) = ZERO
166
   10             CONTINUE
167
              ELSE
168
                  DO 20 I = 1,N
169
                      Y(I) = BETA*Y(I)
170
   20             CONTINUE
171
              END IF
172
          ELSE
173
              IY = KY
174
              IF (BETA.EQ.ZERO) THEN
175
                  DO 30 I = 1,N
176
                      Y(IY) = ZERO
177
                      IY = IY + INCY
178
   30             CONTINUE
179
              ELSE
180
                  DO 40 I = 1,N
181
                      Y(IY) = BETA*Y(IY)
182
                      IY = IY + INCY
183
   40             CONTINUE
184
              END IF
185
          END IF
186
      END IF
187
      IF (ALPHA.EQ.ZERO) RETURN
188
      IF (LSAME(UPLO,'U')) THEN
189
*
190
*        Form  y  when A is stored in upper triangle.
191
*
192
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
193
              DO 60 J = 1,N
194
                  TEMP1 = ALPHA*X(J)
195
                  TEMP2 = ZERO
196
                  DO 50 I = 1,J - 1
197
                      Y(I) = Y(I) + TEMP1*A(I,J)
198
                      TEMP2 = TEMP2 + A(I,J)*X(I)
199
   50             CONTINUE
200
                  Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2
201
   60         CONTINUE
202
          ELSE
203
              JX = KX
204
              JY = KY
205
              DO 80 J = 1,N
206
                  TEMP1 = ALPHA*X(JX)
207
                  TEMP2 = ZERO
208
                  IX = KX
209
                  IY = KY
210
                  DO 70 I = 1,J - 1
211
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
212
                      TEMP2 = TEMP2 + A(I,J)*X(IX)
213
                      IX = IX + INCX
214
                      IY = IY + INCY
215
   70             CONTINUE
216
                  Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2
217
                  JX = JX + INCX
218
                  JY = JY + INCY
219
   80         CONTINUE
220
          END IF
221
      ELSE
222
*
223
*        Form  y  when A is stored in lower triangle.
224
*
225
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
226
              DO 100 J = 1,N
227
                  TEMP1 = ALPHA*X(J)
228
                  TEMP2 = ZERO
229
                  Y(J) = Y(J) + TEMP1*A(J,J)
230
                  DO 90 I = J + 1,N
231
                      Y(I) = Y(I) + TEMP1*A(I,J)
232
                      TEMP2 = TEMP2 + A(I,J)*X(I)
233
   90             CONTINUE
234
                  Y(J) = Y(J) + ALPHA*TEMP2
235
  100         CONTINUE
236
          ELSE
237
              JX = KX
238
              JY = KY
239
              DO 120 J = 1,N
240
                  TEMP1 = ALPHA*X(JX)
241
                  TEMP2 = ZERO
242
                  Y(JY) = Y(JY) + TEMP1*A(J,J)
243
                  IX = JX
244
                  IY = JY
245
                  DO 110 I = J + 1,N
246
                      IX = IX + INCX
247
                      IY = IY + INCY
248
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
249
                      TEMP2 = TEMP2 + A(I,J)*X(IX)
250
  110             CONTINUE
251
                  Y(JY) = Y(JY) + ALPHA*TEMP2
252
                  JX = JX + INCX
253
                  JY = JY + INCY
254
  120         CONTINUE
255
          END IF
256
      END IF
257
*
258
      RETURN
259
*
260
*     End of SSYMV .
261
*
262
      END