root / src / blas / ssymv.f @ 5
Historique | Voir | Annoter | Télécharger (7,58 ko)
1 |
SUBROUTINE SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
REAL ALPHA,BETA |
4 |
INTEGER INCX,INCY,LDA,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
REAL A(LDA,*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* SSYMV performs the matrix-vector operation |
15 |
* |
16 |
* y := alpha*A*x + beta*y, |
17 |
* |
18 |
* where alpha and beta are scalars, x and y are n element vectors and |
19 |
* A is an n by n symmetric matrix. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the array A is to be referenced as |
27 |
* follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' Only the upper triangular part of A |
30 |
* is to be referenced. |
31 |
* |
32 |
* UPLO = 'L' or 'l' Only the lower triangular part of A |
33 |
* is to be referenced. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - REAL . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* A - REAL array of DIMENSION ( LDA, n ). |
47 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
48 |
* upper triangular part of the array A must contain the upper |
49 |
* triangular part of the symmetric matrix and the strictly |
50 |
* lower triangular part of A is not referenced. |
51 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
52 |
* lower triangular part of the array A must contain the lower |
53 |
* triangular part of the symmetric matrix and the strictly |
54 |
* upper triangular part of A is not referenced. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* LDA - INTEGER. |
58 |
* On entry, LDA specifies the first dimension of A as declared |
59 |
* in the calling (sub) program. LDA must be at least |
60 |
* max( 1, n ). |
61 |
* Unchanged on exit. |
62 |
* |
63 |
* X - REAL array of dimension at least |
64 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
65 |
* Before entry, the incremented array X must contain the n |
66 |
* element vector x. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* INCX - INTEGER. |
70 |
* On entry, INCX specifies the increment for the elements of |
71 |
* X. INCX must not be zero. |
72 |
* Unchanged on exit. |
73 |
* |
74 |
* BETA - REAL . |
75 |
* On entry, BETA specifies the scalar beta. When BETA is |
76 |
* supplied as zero then Y need not be set on input. |
77 |
* Unchanged on exit. |
78 |
* |
79 |
* Y - REAL array of dimension at least |
80 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
81 |
* Before entry, the incremented array Y must contain the n |
82 |
* element vector y. On exit, Y is overwritten by the updated |
83 |
* vector y. |
84 |
* |
85 |
* INCY - INTEGER. |
86 |
* On entry, INCY specifies the increment for the elements of |
87 |
* Y. INCY must not be zero. |
88 |
* Unchanged on exit. |
89 |
* |
90 |
* |
91 |
* Level 2 Blas routine. |
92 |
* |
93 |
* -- Written on 22-October-1986. |
94 |
* Jack Dongarra, Argonne National Lab. |
95 |
* Jeremy Du Croz, Nag Central Office. |
96 |
* Sven Hammarling, Nag Central Office. |
97 |
* Richard Hanson, Sandia National Labs. |
98 |
* |
99 |
* |
100 |
* .. Parameters .. |
101 |
REAL ONE,ZERO |
102 |
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
103 |
* .. |
104 |
* .. Local Scalars .. |
105 |
REAL TEMP1,TEMP2 |
106 |
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY |
107 |
* .. |
108 |
* .. External Functions .. |
109 |
LOGICAL LSAME |
110 |
EXTERNAL LSAME |
111 |
* .. |
112 |
* .. External Subroutines .. |
113 |
EXTERNAL XERBLA |
114 |
* .. |
115 |
* .. Intrinsic Functions .. |
116 |
INTRINSIC MAX |
117 |
* .. |
118 |
* |
119 |
* Test the input parameters. |
120 |
* |
121 |
INFO = 0 |
122 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
123 |
INFO = 1 |
124 |
ELSE IF (N.LT.0) THEN |
125 |
INFO = 2 |
126 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
127 |
INFO = 5 |
128 |
ELSE IF (INCX.EQ.0) THEN |
129 |
INFO = 7 |
130 |
ELSE IF (INCY.EQ.0) THEN |
131 |
INFO = 10 |
132 |
END IF |
133 |
IF (INFO.NE.0) THEN |
134 |
CALL XERBLA('SSYMV ',INFO) |
135 |
RETURN |
136 |
END IF |
137 |
* |
138 |
* Quick return if possible. |
139 |
* |
140 |
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
141 |
* |
142 |
* Set up the start points in X and Y. |
143 |
* |
144 |
IF (INCX.GT.0) THEN |
145 |
KX = 1 |
146 |
ELSE |
147 |
KX = 1 - (N-1)*INCX |
148 |
END IF |
149 |
IF (INCY.GT.0) THEN |
150 |
KY = 1 |
151 |
ELSE |
152 |
KY = 1 - (N-1)*INCY |
153 |
END IF |
154 |
* |
155 |
* Start the operations. In this version the elements of A are |
156 |
* accessed sequentially with one pass through the triangular part |
157 |
* of A. |
158 |
* |
159 |
* First form y := beta*y. |
160 |
* |
161 |
IF (BETA.NE.ONE) THEN |
162 |
IF (INCY.EQ.1) THEN |
163 |
IF (BETA.EQ.ZERO) THEN |
164 |
DO 10 I = 1,N |
165 |
Y(I) = ZERO |
166 |
10 CONTINUE |
167 |
ELSE |
168 |
DO 20 I = 1,N |
169 |
Y(I) = BETA*Y(I) |
170 |
20 CONTINUE |
171 |
END IF |
172 |
ELSE |
173 |
IY = KY |
174 |
IF (BETA.EQ.ZERO) THEN |
175 |
DO 30 I = 1,N |
176 |
Y(IY) = ZERO |
177 |
IY = IY + INCY |
178 |
30 CONTINUE |
179 |
ELSE |
180 |
DO 40 I = 1,N |
181 |
Y(IY) = BETA*Y(IY) |
182 |
IY = IY + INCY |
183 |
40 CONTINUE |
184 |
END IF |
185 |
END IF |
186 |
END IF |
187 |
IF (ALPHA.EQ.ZERO) RETURN |
188 |
IF (LSAME(UPLO,'U')) THEN |
189 |
* |
190 |
* Form y when A is stored in upper triangle. |
191 |
* |
192 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
193 |
DO 60 J = 1,N |
194 |
TEMP1 = ALPHA*X(J) |
195 |
TEMP2 = ZERO |
196 |
DO 50 I = 1,J - 1 |
197 |
Y(I) = Y(I) + TEMP1*A(I,J) |
198 |
TEMP2 = TEMP2 + A(I,J)*X(I) |
199 |
50 CONTINUE |
200 |
Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2 |
201 |
60 CONTINUE |
202 |
ELSE |
203 |
JX = KX |
204 |
JY = KY |
205 |
DO 80 J = 1,N |
206 |
TEMP1 = ALPHA*X(JX) |
207 |
TEMP2 = ZERO |
208 |
IX = KX |
209 |
IY = KY |
210 |
DO 70 I = 1,J - 1 |
211 |
Y(IY) = Y(IY) + TEMP1*A(I,J) |
212 |
TEMP2 = TEMP2 + A(I,J)*X(IX) |
213 |
IX = IX + INCX |
214 |
IY = IY + INCY |
215 |
70 CONTINUE |
216 |
Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2 |
217 |
JX = JX + INCX |
218 |
JY = JY + INCY |
219 |
80 CONTINUE |
220 |
END IF |
221 |
ELSE |
222 |
* |
223 |
* Form y when A is stored in lower triangle. |
224 |
* |
225 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
226 |
DO 100 J = 1,N |
227 |
TEMP1 = ALPHA*X(J) |
228 |
TEMP2 = ZERO |
229 |
Y(J) = Y(J) + TEMP1*A(J,J) |
230 |
DO 90 I = J + 1,N |
231 |
Y(I) = Y(I) + TEMP1*A(I,J) |
232 |
TEMP2 = TEMP2 + A(I,J)*X(I) |
233 |
90 CONTINUE |
234 |
Y(J) = Y(J) + ALPHA*TEMP2 |
235 |
100 CONTINUE |
236 |
ELSE |
237 |
JX = KX |
238 |
JY = KY |
239 |
DO 120 J = 1,N |
240 |
TEMP1 = ALPHA*X(JX) |
241 |
TEMP2 = ZERO |
242 |
Y(JY) = Y(JY) + TEMP1*A(J,J) |
243 |
IX = JX |
244 |
IY = JY |
245 |
DO 110 I = J + 1,N |
246 |
IX = IX + INCX |
247 |
IY = IY + INCY |
248 |
Y(IY) = Y(IY) + TEMP1*A(I,J) |
249 |
TEMP2 = TEMP2 + A(I,J)*X(IX) |
250 |
110 CONTINUE |
251 |
Y(JY) = Y(JY) + ALPHA*TEMP2 |
252 |
JX = JX + INCX |
253 |
JY = JY + INCY |
254 |
120 CONTINUE |
255 |
END IF |
256 |
END IF |
257 |
* |
258 |
RETURN |
259 |
* |
260 |
* End of SSYMV . |
261 |
* |
262 |
END |