Statistiques
| Révision :

root / src / blas / dtrmm.f @ 5

Historique | Voir | Annoter | Télécharger (10,97 ko)

1
      SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA
4
      INTEGER LDA,LDB,M,N
5
      CHARACTER DIAG,SIDE,TRANSA,UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE PRECISION A(LDA,*),B(LDB,*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  DTRMM  performs one of the matrix-matrix operations
15
*
16
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
17
*
18
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
19
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
20
*
21
*     op( A ) = A   or   op( A ) = A'.
22
*
23
*  Arguments
24
*  ==========
25
*
26
*  SIDE   - CHARACTER*1.
27
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
28
*           the left or right as follows:
29
*
30
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
31
*
32
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
33
*
34
*           Unchanged on exit.
35
*
36
*  UPLO   - CHARACTER*1.
37
*           On entry, UPLO specifies whether the matrix A is an upper or
38
*           lower triangular matrix as follows:
39
*
40
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
41
*
42
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
43
*
44
*           Unchanged on exit.
45
*
46
*  TRANSA - CHARACTER*1.
47
*           On entry, TRANSA specifies the form of op( A ) to be used in
48
*           the matrix multiplication as follows:
49
*
50
*              TRANSA = 'N' or 'n'   op( A ) = A.
51
*
52
*              TRANSA = 'T' or 't'   op( A ) = A'.
53
*
54
*              TRANSA = 'C' or 'c'   op( A ) = A'.
55
*
56
*           Unchanged on exit.
57
*
58
*  DIAG   - CHARACTER*1.
59
*           On entry, DIAG specifies whether or not A is unit triangular
60
*           as follows:
61
*
62
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
63
*
64
*              DIAG = 'N' or 'n'   A is not assumed to be unit
65
*                                  triangular.
66
*
67
*           Unchanged on exit.
68
*
69
*  M      - INTEGER.
70
*           On entry, M specifies the number of rows of B. M must be at
71
*           least zero.
72
*           Unchanged on exit.
73
*
74
*  N      - INTEGER.
75
*           On entry, N specifies the number of columns of B.  N must be
76
*           at least zero.
77
*           Unchanged on exit.
78
*
79
*  ALPHA  - DOUBLE PRECISION.
80
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
81
*           zero then  A is not referenced and  B need not be set before
82
*           entry.
83
*           Unchanged on exit.
84
*
85
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
86
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
87
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
88
*           upper triangular part of the array  A must contain the upper
89
*           triangular matrix  and the strictly lower triangular part of
90
*           A is not referenced.
91
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
92
*           lower triangular part of the array  A must contain the lower
93
*           triangular matrix  and the strictly upper triangular part of
94
*           A is not referenced.
95
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
96
*           A  are not referenced either,  but are assumed to be  unity.
97
*           Unchanged on exit.
98
*
99
*  LDA    - INTEGER.
100
*           On entry, LDA specifies the first dimension of A as declared
101
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
102
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
103
*           then LDA must be at least max( 1, n ).
104
*           Unchanged on exit.
105
*
106
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
107
*           Before entry,  the leading  m by n part of the array  B must
108
*           contain the matrix  B,  and  on exit  is overwritten  by the
109
*           transformed matrix.
110
*
111
*  LDB    - INTEGER.
112
*           On entry, LDB specifies the first dimension of B as declared
113
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
114
*           max( 1, m ).
115
*           Unchanged on exit.
116
*
117
*
118
*  Level 3 Blas routine.
119
*
120
*  -- Written on 8-February-1989.
121
*     Jack Dongarra, Argonne National Laboratory.
122
*     Iain Duff, AERE Harwell.
123
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
124
*     Sven Hammarling, Numerical Algorithms Group Ltd.
125
*
126
*
127
*     .. External Functions ..
128
      LOGICAL LSAME
129
      EXTERNAL LSAME
130
*     ..
131
*     .. External Subroutines ..
132
      EXTERNAL XERBLA
133
*     ..
134
*     .. Intrinsic Functions ..
135
      INTRINSIC MAX
136
*     ..
137
*     .. Local Scalars ..
138
      DOUBLE PRECISION TEMP
139
      INTEGER I,INFO,J,K,NROWA
140
      LOGICAL LSIDE,NOUNIT,UPPER
141
*     ..
142
*     .. Parameters ..
143
      DOUBLE PRECISION ONE,ZERO
144
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
145
*     ..
146
*
147
*     Test the input parameters.
148
*
149
      LSIDE = LSAME(SIDE,'L')
150
      IF (LSIDE) THEN
151
          NROWA = M
152
      ELSE
153
          NROWA = N
154
      END IF
155
      NOUNIT = LSAME(DIAG,'N')
156
      UPPER = LSAME(UPLO,'U')
157
*
158
      INFO = 0
159
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
160
          INFO = 1
161
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
162
          INFO = 2
163
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
164
     +         (.NOT.LSAME(TRANSA,'T')) .AND.
165
     +         (.NOT.LSAME(TRANSA,'C'))) THEN
166
          INFO = 3
167
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
168
          INFO = 4
169
      ELSE IF (M.LT.0) THEN
170
          INFO = 5
171
      ELSE IF (N.LT.0) THEN
172
          INFO = 6
173
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
174
          INFO = 9
175
      ELSE IF (LDB.LT.MAX(1,M)) THEN
176
          INFO = 11
177
      END IF
178
      IF (INFO.NE.0) THEN
179
          CALL XERBLA('DTRMM ',INFO)
180
          RETURN
181
      END IF
182
*
183
*     Quick return if possible.
184
*
185
      IF (M.EQ.0 .OR. N.EQ.0) RETURN
186
*
187
*     And when  alpha.eq.zero.
188
*
189
      IF (ALPHA.EQ.ZERO) THEN
190
          DO 20 J = 1,N
191
              DO 10 I = 1,M
192
                  B(I,J) = ZERO
193
   10         CONTINUE
194
   20     CONTINUE
195
          RETURN
196
      END IF
197
*
198
*     Start the operations.
199
*
200
      IF (LSIDE) THEN
201
          IF (LSAME(TRANSA,'N')) THEN
202
*
203
*           Form  B := alpha*A*B.
204
*
205
              IF (UPPER) THEN
206
                  DO 50 J = 1,N
207
                      DO 40 K = 1,M
208
                          IF (B(K,J).NE.ZERO) THEN
209
                              TEMP = ALPHA*B(K,J)
210
                              DO 30 I = 1,K - 1
211
                                  B(I,J) = B(I,J) + TEMP*A(I,K)
212
   30                         CONTINUE
213
                              IF (NOUNIT) TEMP = TEMP*A(K,K)
214
                              B(K,J) = TEMP
215
                          END IF
216
   40                 CONTINUE
217
   50             CONTINUE
218
              ELSE
219
                  DO 80 J = 1,N
220
                      DO 70 K = M,1,-1
221
                          IF (B(K,J).NE.ZERO) THEN
222
                              TEMP = ALPHA*B(K,J)
223
                              B(K,J) = TEMP
224
                              IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
225
                              DO 60 I = K + 1,M
226
                                  B(I,J) = B(I,J) + TEMP*A(I,K)
227
   60                         CONTINUE
228
                          END IF
229
   70                 CONTINUE
230
   80             CONTINUE
231
              END IF
232
          ELSE
233
*
234
*           Form  B := alpha*A'*B.
235
*
236
              IF (UPPER) THEN
237
                  DO 110 J = 1,N
238
                      DO 100 I = M,1,-1
239
                          TEMP = B(I,J)
240
                          IF (NOUNIT) TEMP = TEMP*A(I,I)
241
                          DO 90 K = 1,I - 1
242
                              TEMP = TEMP + A(K,I)*B(K,J)
243
   90                     CONTINUE
244
                          B(I,J) = ALPHA*TEMP
245
  100                 CONTINUE
246
  110             CONTINUE
247
              ELSE
248
                  DO 140 J = 1,N
249
                      DO 130 I = 1,M
250
                          TEMP = B(I,J)
251
                          IF (NOUNIT) TEMP = TEMP*A(I,I)
252
                          DO 120 K = I + 1,M
253
                              TEMP = TEMP + A(K,I)*B(K,J)
254
  120                     CONTINUE
255
                          B(I,J) = ALPHA*TEMP
256
  130                 CONTINUE
257
  140             CONTINUE
258
              END IF
259
          END IF
260
      ELSE
261
          IF (LSAME(TRANSA,'N')) THEN
262
*
263
*           Form  B := alpha*B*A.
264
*
265
              IF (UPPER) THEN
266
                  DO 180 J = N,1,-1
267
                      TEMP = ALPHA
268
                      IF (NOUNIT) TEMP = TEMP*A(J,J)
269
                      DO 150 I = 1,M
270
                          B(I,J) = TEMP*B(I,J)
271
  150                 CONTINUE
272
                      DO 170 K = 1,J - 1
273
                          IF (A(K,J).NE.ZERO) THEN
274
                              TEMP = ALPHA*A(K,J)
275
                              DO 160 I = 1,M
276
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
277
  160                         CONTINUE
278
                          END IF
279
  170                 CONTINUE
280
  180             CONTINUE
281
              ELSE
282
                  DO 220 J = 1,N
283
                      TEMP = ALPHA
284
                      IF (NOUNIT) TEMP = TEMP*A(J,J)
285
                      DO 190 I = 1,M
286
                          B(I,J) = TEMP*B(I,J)
287
  190                 CONTINUE
288
                      DO 210 K = J + 1,N
289
                          IF (A(K,J).NE.ZERO) THEN
290
                              TEMP = ALPHA*A(K,J)
291
                              DO 200 I = 1,M
292
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
293
  200                         CONTINUE
294
                          END IF
295
  210                 CONTINUE
296
  220             CONTINUE
297
              END IF
298
          ELSE
299
*
300
*           Form  B := alpha*B*A'.
301
*
302
              IF (UPPER) THEN
303
                  DO 260 K = 1,N
304
                      DO 240 J = 1,K - 1
305
                          IF (A(J,K).NE.ZERO) THEN
306
                              TEMP = ALPHA*A(J,K)
307
                              DO 230 I = 1,M
308
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
309
  230                         CONTINUE
310
                          END IF
311
  240                 CONTINUE
312
                      TEMP = ALPHA
313
                      IF (NOUNIT) TEMP = TEMP*A(K,K)
314
                      IF (TEMP.NE.ONE) THEN
315
                          DO 250 I = 1,M
316
                              B(I,K) = TEMP*B(I,K)
317
  250                     CONTINUE
318
                      END IF
319
  260             CONTINUE
320
              ELSE
321
                  DO 300 K = N,1,-1
322
                      DO 280 J = K + 1,N
323
                          IF (A(J,K).NE.ZERO) THEN
324
                              TEMP = ALPHA*A(J,K)
325
                              DO 270 I = 1,M
326
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
327
  270                         CONTINUE
328
                          END IF
329
  280                 CONTINUE
330
                      TEMP = ALPHA
331
                      IF (NOUNIT) TEMP = TEMP*A(K,K)
332
                      IF (TEMP.NE.ONE) THEN
333
                          DO 290 I = 1,M
334
                              B(I,K) = TEMP*B(I,K)
335
  290                     CONTINUE
336
                      END IF
337
  300             CONTINUE
338
              END IF
339
          END IF
340
      END IF
341
*
342
      RETURN
343
*
344
*     End of DTRMM .
345
*
346
      END