Statistiques
| Révision :

root / src / blas / dtpsv.f @ 5

Historique | Voir | Annoter | Télécharger (9,12 ko)

1
      SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      DOUBLE PRECISION AP(*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  DTPSV  solves one of the systems of equations
14
*
15
*     A*x = b,   or   A'*x = b,
16
*
17
*  where b and x are n element vectors and A is an n by n unit, or
18
*  non-unit, upper or lower triangular matrix, supplied in packed form.
19
*
20
*  No test for singularity or near-singularity is included in this
21
*  routine. Such tests must be performed before calling this routine.
22
*
23
*  Arguments
24
*  ==========
25
*
26
*  UPLO   - CHARACTER*1.
27
*           On entry, UPLO specifies whether the matrix is an upper or
28
*           lower triangular matrix as follows:
29
*
30
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
31
*
32
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
33
*
34
*           Unchanged on exit.
35
*
36
*  TRANS  - CHARACTER*1.
37
*           On entry, TRANS specifies the equations to be solved as
38
*           follows:
39
*
40
*              TRANS = 'N' or 'n'   A*x = b.
41
*
42
*              TRANS = 'T' or 't'   A'*x = b.
43
*
44
*              TRANS = 'C' or 'c'   A'*x = b.
45
*
46
*           Unchanged on exit.
47
*
48
*  DIAG   - CHARACTER*1.
49
*           On entry, DIAG specifies whether or not A is unit
50
*           triangular as follows:
51
*
52
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
53
*
54
*              DIAG = 'N' or 'n'   A is not assumed to be unit
55
*                                  triangular.
56
*
57
*           Unchanged on exit.
58
*
59
*  N      - INTEGER.
60
*           On entry, N specifies the order of the matrix A.
61
*           N must be at least zero.
62
*           Unchanged on exit.
63
*
64
*  AP     - DOUBLE PRECISION array of DIMENSION at least
65
*           ( ( n*( n + 1 ) )/2 ).
66
*           Before entry with  UPLO = 'U' or 'u', the array AP must
67
*           contain the upper triangular matrix packed sequentially,
68
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
69
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
70
*           respectively, and so on.
71
*           Before entry with UPLO = 'L' or 'l', the array AP must
72
*           contain the lower triangular matrix packed sequentially,
73
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
74
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
75
*           respectively, and so on.
76
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
77
*           A are not referenced, but are assumed to be unity.
78
*           Unchanged on exit.
79
*
80
*  X      - DOUBLE PRECISION array of dimension at least
81
*           ( 1 + ( n - 1 )*abs( INCX ) ).
82
*           Before entry, the incremented array X must contain the n
83
*           element right-hand side vector b. On exit, X is overwritten
84
*           with the solution vector x.
85
*
86
*  INCX   - INTEGER.
87
*           On entry, INCX specifies the increment for the elements of
88
*           X. INCX must not be zero.
89
*           Unchanged on exit.
90
*
91
*
92
*  Level 2 Blas routine.
93
*
94
*  -- Written on 22-October-1986.
95
*     Jack Dongarra, Argonne National Lab.
96
*     Jeremy Du Croz, Nag Central Office.
97
*     Sven Hammarling, Nag Central Office.
98
*     Richard Hanson, Sandia National Labs.
99
*
100
*
101
*     .. Parameters ..
102
      DOUBLE PRECISION ZERO
103
      PARAMETER (ZERO=0.0D+0)
104
*     ..
105
*     .. Local Scalars ..
106
      DOUBLE PRECISION TEMP
107
      INTEGER I,INFO,IX,J,JX,K,KK,KX
108
      LOGICAL NOUNIT
109
*     ..
110
*     .. External Functions ..
111
      LOGICAL LSAME
112
      EXTERNAL LSAME
113
*     ..
114
*     .. External Subroutines ..
115
      EXTERNAL XERBLA
116
*     ..
117
*
118
*     Test the input parameters.
119
*
120
      INFO = 0
121
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
122
          INFO = 1
123
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
124
     +         .NOT.LSAME(TRANS,'C')) THEN
125
          INFO = 2
126
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
127
          INFO = 3
128
      ELSE IF (N.LT.0) THEN
129
          INFO = 4
130
      ELSE IF (INCX.EQ.0) THEN
131
          INFO = 7
132
      END IF
133
      IF (INFO.NE.0) THEN
134
          CALL XERBLA('DTPSV ',INFO)
135
          RETURN
136
      END IF
137
*
138
*     Quick return if possible.
139
*
140
      IF (N.EQ.0) RETURN
141
*
142
      NOUNIT = LSAME(DIAG,'N')
143
*
144
*     Set up the start point in X if the increment is not unity. This
145
*     will be  ( N - 1 )*INCX  too small for descending loops.
146
*
147
      IF (INCX.LE.0) THEN
148
          KX = 1 - (N-1)*INCX
149
      ELSE IF (INCX.NE.1) THEN
150
          KX = 1
151
      END IF
152
*
153
*     Start the operations. In this version the elements of AP are
154
*     accessed sequentially with one pass through AP.
155
*
156
      IF (LSAME(TRANS,'N')) THEN
157
*
158
*        Form  x := inv( A )*x.
159
*
160
          IF (LSAME(UPLO,'U')) THEN
161
              KK = (N* (N+1))/2
162
              IF (INCX.EQ.1) THEN
163
                  DO 20 J = N,1,-1
164
                      IF (X(J).NE.ZERO) THEN
165
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
166
                          TEMP = X(J)
167
                          K = KK - 1
168
                          DO 10 I = J - 1,1,-1
169
                              X(I) = X(I) - TEMP*AP(K)
170
                              K = K - 1
171
   10                     CONTINUE
172
                      END IF
173
                      KK = KK - J
174
   20             CONTINUE
175
              ELSE
176
                  JX = KX + (N-1)*INCX
177
                  DO 40 J = N,1,-1
178
                      IF (X(JX).NE.ZERO) THEN
179
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
180
                          TEMP = X(JX)
181
                          IX = JX
182
                          DO 30 K = KK - 1,KK - J + 1,-1
183
                              IX = IX - INCX
184
                              X(IX) = X(IX) - TEMP*AP(K)
185
   30                     CONTINUE
186
                      END IF
187
                      JX = JX - INCX
188
                      KK = KK - J
189
   40             CONTINUE
190
              END IF
191
          ELSE
192
              KK = 1
193
              IF (INCX.EQ.1) THEN
194
                  DO 60 J = 1,N
195
                      IF (X(J).NE.ZERO) THEN
196
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
197
                          TEMP = X(J)
198
                          K = KK + 1
199
                          DO 50 I = J + 1,N
200
                              X(I) = X(I) - TEMP*AP(K)
201
                              K = K + 1
202
   50                     CONTINUE
203
                      END IF
204
                      KK = KK + (N-J+1)
205
   60             CONTINUE
206
              ELSE
207
                  JX = KX
208
                  DO 80 J = 1,N
209
                      IF (X(JX).NE.ZERO) THEN
210
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
211
                          TEMP = X(JX)
212
                          IX = JX
213
                          DO 70 K = KK + 1,KK + N - J
214
                              IX = IX + INCX
215
                              X(IX) = X(IX) - TEMP*AP(K)
216
   70                     CONTINUE
217
                      END IF
218
                      JX = JX + INCX
219
                      KK = KK + (N-J+1)
220
   80             CONTINUE
221
              END IF
222
          END IF
223
      ELSE
224
*
225
*        Form  x := inv( A' )*x.
226
*
227
          IF (LSAME(UPLO,'U')) THEN
228
              KK = 1
229
              IF (INCX.EQ.1) THEN
230
                  DO 100 J = 1,N
231
                      TEMP = X(J)
232
                      K = KK
233
                      DO 90 I = 1,J - 1
234
                          TEMP = TEMP - AP(K)*X(I)
235
                          K = K + 1
236
   90                 CONTINUE
237
                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
238
                      X(J) = TEMP
239
                      KK = KK + J
240
  100             CONTINUE
241
              ELSE
242
                  JX = KX
243
                  DO 120 J = 1,N
244
                      TEMP = X(JX)
245
                      IX = KX
246
                      DO 110 K = KK,KK + J - 2
247
                          TEMP = TEMP - AP(K)*X(IX)
248
                          IX = IX + INCX
249
  110                 CONTINUE
250
                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
251
                      X(JX) = TEMP
252
                      JX = JX + INCX
253
                      KK = KK + J
254
  120             CONTINUE
255
              END IF
256
          ELSE
257
              KK = (N* (N+1))/2
258
              IF (INCX.EQ.1) THEN
259
                  DO 140 J = N,1,-1
260
                      TEMP = X(J)
261
                      K = KK
262
                      DO 130 I = N,J + 1,-1
263
                          TEMP = TEMP - AP(K)*X(I)
264
                          K = K - 1
265
  130                 CONTINUE
266
                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
267
                      X(J) = TEMP
268
                      KK = KK - (N-J+1)
269
  140             CONTINUE
270
              ELSE
271
                  KX = KX + (N-1)*INCX
272
                  JX = KX
273
                  DO 160 J = N,1,-1
274
                      TEMP = X(JX)
275
                      IX = KX
276
                      DO 150 K = KK,KK - (N- (J+1)),-1
277
                          TEMP = TEMP - AP(K)*X(IX)
278
                          IX = IX - INCX
279
  150                 CONTINUE
280
                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
281
                      X(JX) = TEMP
282
                      JX = JX - INCX
283
                      KK = KK - (N-J+1)
284
  160             CONTINUE
285
              END IF
286
          END IF
287
      END IF
288
*
289
      RETURN
290
*
291
*     End of DTPSV .
292
*
293
      END