Statistiques
| Révision :

root / src / blas / dspr2.f @ 5

Historique | Voir | Annoter | Télécharger (7 ko)

1
      SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA
4
      INTEGER INCX,INCY,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE PRECISION AP(*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  DSPR2  performs the symmetric rank 2 operation
15
*
16
*     A := alpha*x*y' + alpha*y*x' + A,
17
*
18
*  where alpha is a scalar, x and y are n element vectors and A is an
19
*  n by n symmetric matrix, supplied in packed form.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the matrix A is supplied in the packed
27
*           array AP as follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  supplied in AP.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  supplied in AP.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - DOUBLE PRECISION.
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  X      - DOUBLE PRECISION array of dimension at least
47
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48
*           Before entry, the incremented array X must contain the n
49
*           element vector x.
50
*           Unchanged on exit.
51
*
52
*  INCX   - INTEGER.
53
*           On entry, INCX specifies the increment for the elements of
54
*           X. INCX must not be zero.
55
*           Unchanged on exit.
56
*
57
*  Y      - DOUBLE PRECISION array of dimension at least
58
*           ( 1 + ( n - 1 )*abs( INCY ) ).
59
*           Before entry, the incremented array Y must contain the n
60
*           element vector y.
61
*           Unchanged on exit.
62
*
63
*  INCY   - INTEGER.
64
*           On entry, INCY specifies the increment for the elements of
65
*           Y. INCY must not be zero.
66
*           Unchanged on exit.
67
*
68
*  AP     - DOUBLE PRECISION array of DIMENSION at least
69
*           ( ( n*( n + 1 ) )/2 ).
70
*           Before entry with  UPLO = 'U' or 'u', the array AP must
71
*           contain the upper triangular part of the symmetric matrix
72
*           packed sequentially, column by column, so that AP( 1 )
73
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
74
*           and a( 2, 2 ) respectively, and so on. On exit, the array
75
*           AP is overwritten by the upper triangular part of the
76
*           updated matrix.
77
*           Before entry with UPLO = 'L' or 'l', the array AP must
78
*           contain the lower triangular part of the symmetric matrix
79
*           packed sequentially, column by column, so that AP( 1 )
80
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
81
*           and a( 3, 1 ) respectively, and so on. On exit, the array
82
*           AP is overwritten by the lower triangular part of the
83
*           updated matrix.
84
*
85
*
86
*  Level 2 Blas routine.
87
*
88
*  -- Written on 22-October-1986.
89
*     Jack Dongarra, Argonne National Lab.
90
*     Jeremy Du Croz, Nag Central Office.
91
*     Sven Hammarling, Nag Central Office.
92
*     Richard Hanson, Sandia National Labs.
93
*
94
*
95
*     .. Parameters ..
96
      DOUBLE PRECISION ZERO
97
      PARAMETER (ZERO=0.0D+0)
98
*     ..
99
*     .. Local Scalars ..
100
      DOUBLE PRECISION TEMP1,TEMP2
101
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
102
*     ..
103
*     .. External Functions ..
104
      LOGICAL LSAME
105
      EXTERNAL LSAME
106
*     ..
107
*     .. External Subroutines ..
108
      EXTERNAL XERBLA
109
*     ..
110
*
111
*     Test the input parameters.
112
*
113
      INFO = 0
114
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
115
          INFO = 1
116
      ELSE IF (N.LT.0) THEN
117
          INFO = 2
118
      ELSE IF (INCX.EQ.0) THEN
119
          INFO = 5
120
      ELSE IF (INCY.EQ.0) THEN
121
          INFO = 7
122
      END IF
123
      IF (INFO.NE.0) THEN
124
          CALL XERBLA('DSPR2 ',INFO)
125
          RETURN
126
      END IF
127
*
128
*     Quick return if possible.
129
*
130
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
131
*
132
*     Set up the start points in X and Y if the increments are not both
133
*     unity.
134
*
135
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
136
          IF (INCX.GT.0) THEN
137
              KX = 1
138
          ELSE
139
              KX = 1 - (N-1)*INCX
140
          END IF
141
          IF (INCY.GT.0) THEN
142
              KY = 1
143
          ELSE
144
              KY = 1 - (N-1)*INCY
145
          END IF
146
          JX = KX
147
          JY = KY
148
      END IF
149
*
150
*     Start the operations. In this version the elements of the array AP
151
*     are accessed sequentially with one pass through AP.
152
*
153
      KK = 1
154
      IF (LSAME(UPLO,'U')) THEN
155
*
156
*        Form  A  when upper triangle is stored in AP.
157
*
158
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
159
              DO 20 J = 1,N
160
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
161
                      TEMP1 = ALPHA*Y(J)
162
                      TEMP2 = ALPHA*X(J)
163
                      K = KK
164
                      DO 10 I = 1,J
165
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
166
                          K = K + 1
167
   10                 CONTINUE
168
                  END IF
169
                  KK = KK + J
170
   20         CONTINUE
171
          ELSE
172
              DO 40 J = 1,N
173
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
174
                      TEMP1 = ALPHA*Y(JY)
175
                      TEMP2 = ALPHA*X(JX)
176
                      IX = KX
177
                      IY = KY
178
                      DO 30 K = KK,KK + J - 1
179
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
180
                          IX = IX + INCX
181
                          IY = IY + INCY
182
   30                 CONTINUE
183
                  END IF
184
                  JX = JX + INCX
185
                  JY = JY + INCY
186
                  KK = KK + J
187
   40         CONTINUE
188
          END IF
189
      ELSE
190
*
191
*        Form  A  when lower triangle is stored in AP.
192
*
193
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
194
              DO 60 J = 1,N
195
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
196
                      TEMP1 = ALPHA*Y(J)
197
                      TEMP2 = ALPHA*X(J)
198
                      K = KK
199
                      DO 50 I = J,N
200
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
201
                          K = K + 1
202
   50                 CONTINUE
203
                  END IF
204
                  KK = KK + N - J + 1
205
   60         CONTINUE
206
          ELSE
207
              DO 80 J = 1,N
208
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
209
                      TEMP1 = ALPHA*Y(JY)
210
                      TEMP2 = ALPHA*X(JX)
211
                      IX = JX
212
                      IY = JY
213
                      DO 70 K = KK,KK + N - J
214
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
215
                          IX = IX + INCX
216
                          IY = IY + INCY
217
   70                 CONTINUE
218
                  END IF
219
                  JX = JX + INCX
220
                  JY = JY + INCY
221
                  KK = KK + N - J + 1
222
   80         CONTINUE
223
          END IF
224
      END IF
225
*
226
      RETURN
227
*
228
*     End of DSPR2 .
229
*
230
      END