Statistiques
| Révision :

root / src / blas / ctbsv.f @ 5

Historique | Voir | Annoter | Télécharger (12,39 ko)

1
      SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,K,LDA,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      COMPLEX A(LDA,*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  CTBSV  solves one of the systems of equations
14
*
15
*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
16
*
17
*  where b and x are n element vectors and A is an n by n unit, or
18
*  non-unit, upper or lower triangular band matrix, with ( k + 1 )
19
*  diagonals.
20
*
21
*  No test for singularity or near-singularity is included in this
22
*  routine. Such tests must be performed before calling this routine.
23
*
24
*  Arguments
25
*  ==========
26
*
27
*  UPLO   - CHARACTER*1.
28
*           On entry, UPLO specifies whether the matrix is an upper or
29
*           lower triangular matrix as follows:
30
*
31
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
32
*
33
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
34
*
35
*           Unchanged on exit.
36
*
37
*  TRANS  - CHARACTER*1.
38
*           On entry, TRANS specifies the equations to be solved as
39
*           follows:
40
*
41
*              TRANS = 'N' or 'n'   A*x = b.
42
*
43
*              TRANS = 'T' or 't'   A'*x = b.
44
*
45
*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
46
*
47
*           Unchanged on exit.
48
*
49
*  DIAG   - CHARACTER*1.
50
*           On entry, DIAG specifies whether or not A is unit
51
*           triangular as follows:
52
*
53
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
54
*
55
*              DIAG = 'N' or 'n'   A is not assumed to be unit
56
*                                  triangular.
57
*
58
*           Unchanged on exit.
59
*
60
*  N      - INTEGER.
61
*           On entry, N specifies the order of the matrix A.
62
*           N must be at least zero.
63
*           Unchanged on exit.
64
*
65
*  K      - INTEGER.
66
*           On entry with UPLO = 'U' or 'u', K specifies the number of
67
*           super-diagonals of the matrix A.
68
*           On entry with UPLO = 'L' or 'l', K specifies the number of
69
*           sub-diagonals of the matrix A.
70
*           K must satisfy  0 .le. K.
71
*           Unchanged on exit.
72
*
73
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
74
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
75
*           by n part of the array A must contain the upper triangular
76
*           band part of the matrix of coefficients, supplied column by
77
*           column, with the leading diagonal of the matrix in row
78
*           ( k + 1 ) of the array, the first super-diagonal starting at
79
*           position 2 in row k, and so on. The top left k by k triangle
80
*           of the array A is not referenced.
81
*           The following program segment will transfer an upper
82
*           triangular band matrix from conventional full matrix storage
83
*           to band storage:
84
*
85
*                 DO 20, J = 1, N
86
*                    M = K + 1 - J
87
*                    DO 10, I = MAX( 1, J - K ), J
88
*                       A( M + I, J ) = matrix( I, J )
89
*              10    CONTINUE
90
*              20 CONTINUE
91
*
92
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
93
*           by n part of the array A must contain the lower triangular
94
*           band part of the matrix of coefficients, supplied column by
95
*           column, with the leading diagonal of the matrix in row 1 of
96
*           the array, the first sub-diagonal starting at position 1 in
97
*           row 2, and so on. The bottom right k by k triangle of the
98
*           array A is not referenced.
99
*           The following program segment will transfer a lower
100
*           triangular band matrix from conventional full matrix storage
101
*           to band storage:
102
*
103
*                 DO 20, J = 1, N
104
*                    M = 1 - J
105
*                    DO 10, I = J, MIN( N, J + K )
106
*                       A( M + I, J ) = matrix( I, J )
107
*              10    CONTINUE
108
*              20 CONTINUE
109
*
110
*           Note that when DIAG = 'U' or 'u' the elements of the array A
111
*           corresponding to the diagonal elements of the matrix are not
112
*           referenced, but are assumed to be unity.
113
*           Unchanged on exit.
114
*
115
*  LDA    - INTEGER.
116
*           On entry, LDA specifies the first dimension of A as declared
117
*           in the calling (sub) program. LDA must be at least
118
*           ( k + 1 ).
119
*           Unchanged on exit.
120
*
121
*  X      - COMPLEX          array of dimension at least
122
*           ( 1 + ( n - 1 )*abs( INCX ) ).
123
*           Before entry, the incremented array X must contain the n
124
*           element right-hand side vector b. On exit, X is overwritten
125
*           with the solution vector x.
126
*
127
*  INCX   - INTEGER.
128
*           On entry, INCX specifies the increment for the elements of
129
*           X. INCX must not be zero.
130
*           Unchanged on exit.
131
*
132
*
133
*  Level 2 Blas routine.
134
*
135
*  -- Written on 22-October-1986.
136
*     Jack Dongarra, Argonne National Lab.
137
*     Jeremy Du Croz, Nag Central Office.
138
*     Sven Hammarling, Nag Central Office.
139
*     Richard Hanson, Sandia National Labs.
140
*
141
*
142
*     .. Parameters ..
143
      COMPLEX ZERO
144
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
145
*     ..
146
*     .. Local Scalars ..
147
      COMPLEX TEMP
148
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
149
      LOGICAL NOCONJ,NOUNIT
150
*     ..
151
*     .. External Functions ..
152
      LOGICAL LSAME
153
      EXTERNAL LSAME
154
*     ..
155
*     .. External Subroutines ..
156
      EXTERNAL XERBLA
157
*     ..
158
*     .. Intrinsic Functions ..
159
      INTRINSIC CONJG,MAX,MIN
160
*     ..
161
*
162
*     Test the input parameters.
163
*
164
      INFO = 0
165
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
166
          INFO = 1
167
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
168
     +         .NOT.LSAME(TRANS,'C')) THEN
169
          INFO = 2
170
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
171
          INFO = 3
172
      ELSE IF (N.LT.0) THEN
173
          INFO = 4
174
      ELSE IF (K.LT.0) THEN
175
          INFO = 5
176
      ELSE IF (LDA.LT. (K+1)) THEN
177
          INFO = 7
178
      ELSE IF (INCX.EQ.0) THEN
179
          INFO = 9
180
      END IF
181
      IF (INFO.NE.0) THEN
182
          CALL XERBLA('CTBSV ',INFO)
183
          RETURN
184
      END IF
185
*
186
*     Quick return if possible.
187
*
188
      IF (N.EQ.0) RETURN
189
*
190
      NOCONJ = LSAME(TRANS,'T')
191
      NOUNIT = LSAME(DIAG,'N')
192
*
193
*     Set up the start point in X if the increment is not unity. This
194
*     will be  ( N - 1 )*INCX  too small for descending loops.
195
*
196
      IF (INCX.LE.0) THEN
197
          KX = 1 - (N-1)*INCX
198
      ELSE IF (INCX.NE.1) THEN
199
          KX = 1
200
      END IF
201
*
202
*     Start the operations. In this version the elements of A are
203
*     accessed by sequentially with one pass through A.
204
*
205
      IF (LSAME(TRANS,'N')) THEN
206
*
207
*        Form  x := inv( A )*x.
208
*
209
          IF (LSAME(UPLO,'U')) THEN
210
              KPLUS1 = K + 1
211
              IF (INCX.EQ.1) THEN
212
                  DO 20 J = N,1,-1
213
                      IF (X(J).NE.ZERO) THEN
214
                          L = KPLUS1 - J
215
                          IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
216
                          TEMP = X(J)
217
                          DO 10 I = J - 1,MAX(1,J-K),-1
218
                              X(I) = X(I) - TEMP*A(L+I,J)
219
   10                     CONTINUE
220
                      END IF
221
   20             CONTINUE
222
              ELSE
223
                  KX = KX + (N-1)*INCX
224
                  JX = KX
225
                  DO 40 J = N,1,-1
226
                      KX = KX - INCX
227
                      IF (X(JX).NE.ZERO) THEN
228
                          IX = KX
229
                          L = KPLUS1 - J
230
                          IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
231
                          TEMP = X(JX)
232
                          DO 30 I = J - 1,MAX(1,J-K),-1
233
                              X(IX) = X(IX) - TEMP*A(L+I,J)
234
                              IX = IX - INCX
235
   30                     CONTINUE
236
                      END IF
237
                      JX = JX - INCX
238
   40             CONTINUE
239
              END IF
240
          ELSE
241
              IF (INCX.EQ.1) THEN
242
                  DO 60 J = 1,N
243
                      IF (X(J).NE.ZERO) THEN
244
                          L = 1 - J
245
                          IF (NOUNIT) X(J) = X(J)/A(1,J)
246
                          TEMP = X(J)
247
                          DO 50 I = J + 1,MIN(N,J+K)
248
                              X(I) = X(I) - TEMP*A(L+I,J)
249
   50                     CONTINUE
250
                      END IF
251
   60             CONTINUE
252
              ELSE
253
                  JX = KX
254
                  DO 80 J = 1,N
255
                      KX = KX + INCX
256
                      IF (X(JX).NE.ZERO) THEN
257
                          IX = KX
258
                          L = 1 - J
259
                          IF (NOUNIT) X(JX) = X(JX)/A(1,J)
260
                          TEMP = X(JX)
261
                          DO 70 I = J + 1,MIN(N,J+K)
262
                              X(IX) = X(IX) - TEMP*A(L+I,J)
263
                              IX = IX + INCX
264
   70                     CONTINUE
265
                      END IF
266
                      JX = JX + INCX
267
   80             CONTINUE
268
              END IF
269
          END IF
270
      ELSE
271
*
272
*        Form  x := inv( A' )*x  or  x := inv( conjg( A') )*x.
273
*
274
          IF (LSAME(UPLO,'U')) THEN
275
              KPLUS1 = K + 1
276
              IF (INCX.EQ.1) THEN
277
                  DO 110 J = 1,N
278
                      TEMP = X(J)
279
                      L = KPLUS1 - J
280
                      IF (NOCONJ) THEN
281
                          DO 90 I = MAX(1,J-K),J - 1
282
                              TEMP = TEMP - A(L+I,J)*X(I)
283
   90                     CONTINUE
284
                          IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
285
                      ELSE
286
                          DO 100 I = MAX(1,J-K),J - 1
287
                              TEMP = TEMP - CONJG(A(L+I,J))*X(I)
288
  100                     CONTINUE
289
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
290
                      END IF
291
                      X(J) = TEMP
292
  110             CONTINUE
293
              ELSE
294
                  JX = KX
295
                  DO 140 J = 1,N
296
                      TEMP = X(JX)
297
                      IX = KX
298
                      L = KPLUS1 - J
299
                      IF (NOCONJ) THEN
300
                          DO 120 I = MAX(1,J-K),J - 1
301
                              TEMP = TEMP - A(L+I,J)*X(IX)
302
                              IX = IX + INCX
303
  120                     CONTINUE
304
                          IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
305
                      ELSE
306
                          DO 130 I = MAX(1,J-K),J - 1
307
                              TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
308
                              IX = IX + INCX
309
  130                     CONTINUE
310
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
311
                      END IF
312
                      X(JX) = TEMP
313
                      JX = JX + INCX
314
                      IF (J.GT.K) KX = KX + INCX
315
  140             CONTINUE
316
              END IF
317
          ELSE
318
              IF (INCX.EQ.1) THEN
319
                  DO 170 J = N,1,-1
320
                      TEMP = X(J)
321
                      L = 1 - J
322
                      IF (NOCONJ) THEN
323
                          DO 150 I = MIN(N,J+K),J + 1,-1
324
                              TEMP = TEMP - A(L+I,J)*X(I)
325
  150                     CONTINUE
326
                          IF (NOUNIT) TEMP = TEMP/A(1,J)
327
                      ELSE
328
                          DO 160 I = MIN(N,J+K),J + 1,-1
329
                              TEMP = TEMP - CONJG(A(L+I,J))*X(I)
330
  160                     CONTINUE
331
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
332
                      END IF
333
                      X(J) = TEMP
334
  170             CONTINUE
335
              ELSE
336
                  KX = KX + (N-1)*INCX
337
                  JX = KX
338
                  DO 200 J = N,1,-1
339
                      TEMP = X(JX)
340
                      IX = KX
341
                      L = 1 - J
342
                      IF (NOCONJ) THEN
343
                          DO 180 I = MIN(N,J+K),J + 1,-1
344
                              TEMP = TEMP - A(L+I,J)*X(IX)
345
                              IX = IX - INCX
346
  180                     CONTINUE
347
                          IF (NOUNIT) TEMP = TEMP/A(1,J)
348
                      ELSE
349
                          DO 190 I = MIN(N,J+K),J + 1,-1
350
                              TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
351
                              IX = IX - INCX
352
  190                     CONTINUE
353
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
354
                      END IF
355
                      X(JX) = TEMP
356
                      JX = JX - INCX
357
                      IF ((N-J).GE.K) KX = KX - INCX
358
  200             CONTINUE
359
              END IF
360
          END IF
361
      END IF
362
*
363
      RETURN
364
*
365
*     End of CTBSV .
366
*
367
      END