Statistiques
| Révision :

root / src / blas / zher.f @ 5

Historique | Voir | Annoter | Télécharger (6,47 ko)

1 1 pfleura2
      SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
2 1 pfleura2
*     .. Scalar Arguments ..
3 1 pfleura2
      DOUBLE PRECISION ALPHA
4 1 pfleura2
      INTEGER INCX,LDA,N
5 1 pfleura2
      CHARACTER UPLO
6 1 pfleura2
*     ..
7 1 pfleura2
*     .. Array Arguments ..
8 1 pfleura2
      DOUBLE COMPLEX A(LDA,*),X(*)
9 1 pfleura2
*     ..
10 1 pfleura2
*
11 1 pfleura2
*  Purpose
12 1 pfleura2
*  =======
13 1 pfleura2
*
14 1 pfleura2
*  ZHER   performs the hermitian rank 1 operation
15 1 pfleura2
*
16 1 pfleura2
*     A := alpha*x*conjg( x' ) + A,
17 1 pfleura2
*
18 1 pfleura2
*  where alpha is a real scalar, x is an n element vector and A is an
19 1 pfleura2
*  n by n hermitian matrix.
20 1 pfleura2
*
21 1 pfleura2
*  Arguments
22 1 pfleura2
*  ==========
23 1 pfleura2
*
24 1 pfleura2
*  UPLO   - CHARACTER*1.
25 1 pfleura2
*           On entry, UPLO specifies whether the upper or lower
26 1 pfleura2
*           triangular part of the array A is to be referenced as
27 1 pfleura2
*           follows:
28 1 pfleura2
*
29 1 pfleura2
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30 1 pfleura2
*                                  is to be referenced.
31 1 pfleura2
*
32 1 pfleura2
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33 1 pfleura2
*                                  is to be referenced.
34 1 pfleura2
*
35 1 pfleura2
*           Unchanged on exit.
36 1 pfleura2
*
37 1 pfleura2
*  N      - INTEGER.
38 1 pfleura2
*           On entry, N specifies the order of the matrix A.
39 1 pfleura2
*           N must be at least zero.
40 1 pfleura2
*           Unchanged on exit.
41 1 pfleura2
*
42 1 pfleura2
*  ALPHA  - DOUBLE PRECISION.
43 1 pfleura2
*           On entry, ALPHA specifies the scalar alpha.
44 1 pfleura2
*           Unchanged on exit.
45 1 pfleura2
*
46 1 pfleura2
*  X      - COMPLEX*16       array of dimension at least
47 1 pfleura2
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 pfleura2
*           Before entry, the incremented array X must contain the n
49 1 pfleura2
*           element vector x.
50 1 pfleura2
*           Unchanged on exit.
51 1 pfleura2
*
52 1 pfleura2
*  INCX   - INTEGER.
53 1 pfleura2
*           On entry, INCX specifies the increment for the elements of
54 1 pfleura2
*           X. INCX must not be zero.
55 1 pfleura2
*           Unchanged on exit.
56 1 pfleura2
*
57 1 pfleura2
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
58 1 pfleura2
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
59 1 pfleura2
*           upper triangular part of the array A must contain the upper
60 1 pfleura2
*           triangular part of the hermitian matrix and the strictly
61 1 pfleura2
*           lower triangular part of A is not referenced. On exit, the
62 1 pfleura2
*           upper triangular part of the array A is overwritten by the
63 1 pfleura2
*           upper triangular part of the updated matrix.
64 1 pfleura2
*           Before entry with UPLO = 'L' or 'l', the leading n by n
65 1 pfleura2
*           lower triangular part of the array A must contain the lower
66 1 pfleura2
*           triangular part of the hermitian matrix and the strictly
67 1 pfleura2
*           upper triangular part of A is not referenced. On exit, the
68 1 pfleura2
*           lower triangular part of the array A is overwritten by the
69 1 pfleura2
*           lower triangular part of the updated matrix.
70 1 pfleura2
*           Note that the imaginary parts of the diagonal elements need
71 1 pfleura2
*           not be set, they are assumed to be zero, and on exit they
72 1 pfleura2
*           are set to zero.
73 1 pfleura2
*
74 1 pfleura2
*  LDA    - INTEGER.
75 1 pfleura2
*           On entry, LDA specifies the first dimension of A as declared
76 1 pfleura2
*           in the calling (sub) program. LDA must be at least
77 1 pfleura2
*           max( 1, n ).
78 1 pfleura2
*           Unchanged on exit.
79 1 pfleura2
*
80 1 pfleura2
*
81 1 pfleura2
*  Level 2 Blas routine.
82 1 pfleura2
*
83 1 pfleura2
*  -- Written on 22-October-1986.
84 1 pfleura2
*     Jack Dongarra, Argonne National Lab.
85 1 pfleura2
*     Jeremy Du Croz, Nag Central Office.
86 1 pfleura2
*     Sven Hammarling, Nag Central Office.
87 1 pfleura2
*     Richard Hanson, Sandia National Labs.
88 1 pfleura2
*
89 1 pfleura2
*
90 1 pfleura2
*     .. Parameters ..
91 1 pfleura2
      DOUBLE COMPLEX ZERO
92 1 pfleura2
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
93 1 pfleura2
*     ..
94 1 pfleura2
*     .. Local Scalars ..
95 1 pfleura2
      DOUBLE COMPLEX TEMP
96 1 pfleura2
      INTEGER I,INFO,IX,J,JX,KX
97 1 pfleura2
*     ..
98 1 pfleura2
*     .. External Functions ..
99 1 pfleura2
      LOGICAL LSAME
100 1 pfleura2
      EXTERNAL LSAME
101 1 pfleura2
*     ..
102 1 pfleura2
*     .. External Subroutines ..
103 1 pfleura2
      EXTERNAL XERBLA
104 1 pfleura2
*     ..
105 1 pfleura2
*     .. Intrinsic Functions ..
106 1 pfleura2
      INTRINSIC DBLE,DCONJG,MAX
107 1 pfleura2
*     ..
108 1 pfleura2
*
109 1 pfleura2
*     Test the input parameters.
110 1 pfleura2
*
111 1 pfleura2
      INFO = 0
112 1 pfleura2
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
113 1 pfleura2
          INFO = 1
114 1 pfleura2
      ELSE IF (N.LT.0) THEN
115 1 pfleura2
          INFO = 2
116 1 pfleura2
      ELSE IF (INCX.EQ.0) THEN
117 1 pfleura2
          INFO = 5
118 1 pfleura2
      ELSE IF (LDA.LT.MAX(1,N)) THEN
119 1 pfleura2
          INFO = 7
120 1 pfleura2
      END IF
121 1 pfleura2
      IF (INFO.NE.0) THEN
122 1 pfleura2
          CALL XERBLA('ZHER  ',INFO)
123 1 pfleura2
          RETURN
124 1 pfleura2
      END IF
125 1 pfleura2
*
126 1 pfleura2
*     Quick return if possible.
127 1 pfleura2
*
128 1 pfleura2
      IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
129 1 pfleura2
*
130 1 pfleura2
*     Set the start point in X if the increment is not unity.
131 1 pfleura2
*
132 1 pfleura2
      IF (INCX.LE.0) THEN
133 1 pfleura2
          KX = 1 - (N-1)*INCX
134 1 pfleura2
      ELSE IF (INCX.NE.1) THEN
135 1 pfleura2
          KX = 1
136 1 pfleura2
      END IF
137 1 pfleura2
*
138 1 pfleura2
*     Start the operations. In this version the elements of A are
139 1 pfleura2
*     accessed sequentially with one pass through the triangular part
140 1 pfleura2
*     of A.
141 1 pfleura2
*
142 1 pfleura2
      IF (LSAME(UPLO,'U')) THEN
143 1 pfleura2
*
144 1 pfleura2
*        Form  A  when A is stored in upper triangle.
145 1 pfleura2
*
146 1 pfleura2
          IF (INCX.EQ.1) THEN
147 1 pfleura2
              DO 20 J = 1,N
148 1 pfleura2
                  IF (X(J).NE.ZERO) THEN
149 1 pfleura2
                      TEMP = ALPHA*DCONJG(X(J))
150 1 pfleura2
                      DO 10 I = 1,J - 1
151 1 pfleura2
                          A(I,J) = A(I,J) + X(I)*TEMP
152 1 pfleura2
   10                 CONTINUE
153 1 pfleura2
                      A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP)
154 1 pfleura2
                  ELSE
155 1 pfleura2
                      A(J,J) = DBLE(A(J,J))
156 1 pfleura2
                  END IF
157 1 pfleura2
   20         CONTINUE
158 1 pfleura2
          ELSE
159 1 pfleura2
              JX = KX
160 1 pfleura2
              DO 40 J = 1,N
161 1 pfleura2
                  IF (X(JX).NE.ZERO) THEN
162 1 pfleura2
                      TEMP = ALPHA*DCONJG(X(JX))
163 1 pfleura2
                      IX = KX
164 1 pfleura2
                      DO 30 I = 1,J - 1
165 1 pfleura2
                          A(I,J) = A(I,J) + X(IX)*TEMP
166 1 pfleura2
                          IX = IX + INCX
167 1 pfleura2
   30                 CONTINUE
168 1 pfleura2
                      A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP)
169 1 pfleura2
                  ELSE
170 1 pfleura2
                      A(J,J) = DBLE(A(J,J))
171 1 pfleura2
                  END IF
172 1 pfleura2
                  JX = JX + INCX
173 1 pfleura2
   40         CONTINUE
174 1 pfleura2
          END IF
175 1 pfleura2
      ELSE
176 1 pfleura2
*
177 1 pfleura2
*        Form  A  when A is stored in lower triangle.
178 1 pfleura2
*
179 1 pfleura2
          IF (INCX.EQ.1) THEN
180 1 pfleura2
              DO 60 J = 1,N
181 1 pfleura2
                  IF (X(J).NE.ZERO) THEN
182 1 pfleura2
                      TEMP = ALPHA*DCONJG(X(J))
183 1 pfleura2
                      A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J))
184 1 pfleura2
                      DO 50 I = J + 1,N
185 1 pfleura2
                          A(I,J) = A(I,J) + X(I)*TEMP
186 1 pfleura2
   50                 CONTINUE
187 1 pfleura2
                  ELSE
188 1 pfleura2
                      A(J,J) = DBLE(A(J,J))
189 1 pfleura2
                  END IF
190 1 pfleura2
   60         CONTINUE
191 1 pfleura2
          ELSE
192 1 pfleura2
              JX = KX
193 1 pfleura2
              DO 80 J = 1,N
194 1 pfleura2
                  IF (X(JX).NE.ZERO) THEN
195 1 pfleura2
                      TEMP = ALPHA*DCONJG(X(JX))
196 1 pfleura2
                      A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX))
197 1 pfleura2
                      IX = JX
198 1 pfleura2
                      DO 70 I = J + 1,N
199 1 pfleura2
                          IX = IX + INCX
200 1 pfleura2
                          A(I,J) = A(I,J) + X(IX)*TEMP
201 1 pfleura2
   70                 CONTINUE
202 1 pfleura2
                  ELSE
203 1 pfleura2
                      A(J,J) = DBLE(A(J,J))
204 1 pfleura2
                  END IF
205 1 pfleura2
                  JX = JX + INCX
206 1 pfleura2
   80         CONTINUE
207 1 pfleura2
          END IF
208 1 pfleura2
      END IF
209 1 pfleura2
*
210 1 pfleura2
      RETURN
211 1 pfleura2
*
212 1 pfleura2
*     End of ZHER  .
213 1 pfleura2
*
214 1 pfleura2
      END