Statistiques
| Révision :

root / src / blas / ssbmv.f @ 5

Historique | Voir | Annoter | Télécharger (9,25 ko)

1 1 pfleura2
      SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2 1 pfleura2
*     .. Scalar Arguments ..
3 1 pfleura2
      REAL ALPHA,BETA
4 1 pfleura2
      INTEGER INCX,INCY,K,LDA,N
5 1 pfleura2
      CHARACTER UPLO
6 1 pfleura2
*     ..
7 1 pfleura2
*     .. Array Arguments ..
8 1 pfleura2
      REAL A(LDA,*),X(*),Y(*)
9 1 pfleura2
*     ..
10 1 pfleura2
*
11 1 pfleura2
*  Purpose
12 1 pfleura2
*  =======
13 1 pfleura2
*
14 1 pfleura2
*  SSBMV  performs the matrix-vector  operation
15 1 pfleura2
*
16 1 pfleura2
*     y := alpha*A*x + beta*y,
17 1 pfleura2
*
18 1 pfleura2
*  where alpha and beta are scalars, x and y are n element vectors and
19 1 pfleura2
*  A is an n by n symmetric band matrix, with k super-diagonals.
20 1 pfleura2
*
21 1 pfleura2
*  Arguments
22 1 pfleura2
*  ==========
23 1 pfleura2
*
24 1 pfleura2
*  UPLO   - CHARACTER*1.
25 1 pfleura2
*           On entry, UPLO specifies whether the upper or lower
26 1 pfleura2
*           triangular part of the band matrix A is being supplied as
27 1 pfleura2
*           follows:
28 1 pfleura2
*
29 1 pfleura2
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 pfleura2
*                                  being supplied.
31 1 pfleura2
*
32 1 pfleura2
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 pfleura2
*                                  being supplied.
34 1 pfleura2
*
35 1 pfleura2
*           Unchanged on exit.
36 1 pfleura2
*
37 1 pfleura2
*  N      - INTEGER.
38 1 pfleura2
*           On entry, N specifies the order of the matrix A.
39 1 pfleura2
*           N must be at least zero.
40 1 pfleura2
*           Unchanged on exit.
41 1 pfleura2
*
42 1 pfleura2
*  K      - INTEGER.
43 1 pfleura2
*           On entry, K specifies the number of super-diagonals of the
44 1 pfleura2
*           matrix A. K must satisfy  0 .le. K.
45 1 pfleura2
*           Unchanged on exit.
46 1 pfleura2
*
47 1 pfleura2
*  ALPHA  - REAL            .
48 1 pfleura2
*           On entry, ALPHA specifies the scalar alpha.
49 1 pfleura2
*           Unchanged on exit.
50 1 pfleura2
*
51 1 pfleura2
*  A      - REAL             array of DIMENSION ( LDA, n ).
52 1 pfleura2
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53 1 pfleura2
*           by n part of the array A must contain the upper triangular
54 1 pfleura2
*           band part of the symmetric matrix, supplied column by
55 1 pfleura2
*           column, with the leading diagonal of the matrix in row
56 1 pfleura2
*           ( k + 1 ) of the array, the first super-diagonal starting at
57 1 pfleura2
*           position 2 in row k, and so on. The top left k by k triangle
58 1 pfleura2
*           of the array A is not referenced.
59 1 pfleura2
*           The following program segment will transfer the upper
60 1 pfleura2
*           triangular part of a symmetric band matrix from conventional
61 1 pfleura2
*           full matrix storage to band storage:
62 1 pfleura2
*
63 1 pfleura2
*                 DO 20, J = 1, N
64 1 pfleura2
*                    M = K + 1 - J
65 1 pfleura2
*                    DO 10, I = MAX( 1, J - K ), J
66 1 pfleura2
*                       A( M + I, J ) = matrix( I, J )
67 1 pfleura2
*              10    CONTINUE
68 1 pfleura2
*              20 CONTINUE
69 1 pfleura2
*
70 1 pfleura2
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71 1 pfleura2
*           by n part of the array A must contain the lower triangular
72 1 pfleura2
*           band part of the symmetric matrix, supplied column by
73 1 pfleura2
*           column, with the leading diagonal of the matrix in row 1 of
74 1 pfleura2
*           the array, the first sub-diagonal starting at position 1 in
75 1 pfleura2
*           row 2, and so on. The bottom right k by k triangle of the
76 1 pfleura2
*           array A is not referenced.
77 1 pfleura2
*           The following program segment will transfer the lower
78 1 pfleura2
*           triangular part of a symmetric band matrix from conventional
79 1 pfleura2
*           full matrix storage to band storage:
80 1 pfleura2
*
81 1 pfleura2
*                 DO 20, J = 1, N
82 1 pfleura2
*                    M = 1 - J
83 1 pfleura2
*                    DO 10, I = J, MIN( N, J + K )
84 1 pfleura2
*                       A( M + I, J ) = matrix( I, J )
85 1 pfleura2
*              10    CONTINUE
86 1 pfleura2
*              20 CONTINUE
87 1 pfleura2
*
88 1 pfleura2
*           Unchanged on exit.
89 1 pfleura2
*
90 1 pfleura2
*  LDA    - INTEGER.
91 1 pfleura2
*           On entry, LDA specifies the first dimension of A as declared
92 1 pfleura2
*           in the calling (sub) program. LDA must be at least
93 1 pfleura2
*           ( k + 1 ).
94 1 pfleura2
*           Unchanged on exit.
95 1 pfleura2
*
96 1 pfleura2
*  X      - REAL             array of DIMENSION at least
97 1 pfleura2
*           ( 1 + ( n - 1 )*abs( INCX ) ).
98 1 pfleura2
*           Before entry, the incremented array X must contain the
99 1 pfleura2
*           vector x.
100 1 pfleura2
*           Unchanged on exit.
101 1 pfleura2
*
102 1 pfleura2
*  INCX   - INTEGER.
103 1 pfleura2
*           On entry, INCX specifies the increment for the elements of
104 1 pfleura2
*           X. INCX must not be zero.
105 1 pfleura2
*           Unchanged on exit.
106 1 pfleura2
*
107 1 pfleura2
*  BETA   - REAL            .
108 1 pfleura2
*           On entry, BETA specifies the scalar beta.
109 1 pfleura2
*           Unchanged on exit.
110 1 pfleura2
*
111 1 pfleura2
*  Y      - REAL             array of DIMENSION at least
112 1 pfleura2
*           ( 1 + ( n - 1 )*abs( INCY ) ).
113 1 pfleura2
*           Before entry, the incremented array Y must contain the
114 1 pfleura2
*           vector y. On exit, Y is overwritten by the updated vector y.
115 1 pfleura2
*
116 1 pfleura2
*  INCY   - INTEGER.
117 1 pfleura2
*           On entry, INCY specifies the increment for the elements of
118 1 pfleura2
*           Y. INCY must not be zero.
119 1 pfleura2
*           Unchanged on exit.
120 1 pfleura2
*
121 1 pfleura2
*
122 1 pfleura2
*  Level 2 Blas routine.
123 1 pfleura2
*
124 1 pfleura2
*  -- Written on 22-October-1986.
125 1 pfleura2
*     Jack Dongarra, Argonne National Lab.
126 1 pfleura2
*     Jeremy Du Croz, Nag Central Office.
127 1 pfleura2
*     Sven Hammarling, Nag Central Office.
128 1 pfleura2
*     Richard Hanson, Sandia National Labs.
129 1 pfleura2
*
130 1 pfleura2
*
131 1 pfleura2
*     .. Parameters ..
132 1 pfleura2
      REAL ONE,ZERO
133 1 pfleura2
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
134 1 pfleura2
*     ..
135 1 pfleura2
*     .. Local Scalars ..
136 1 pfleura2
      REAL TEMP1,TEMP2
137 1 pfleura2
      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
138 1 pfleura2
*     ..
139 1 pfleura2
*     .. External Functions ..
140 1 pfleura2
      LOGICAL LSAME
141 1 pfleura2
      EXTERNAL LSAME
142 1 pfleura2
*     ..
143 1 pfleura2
*     .. External Subroutines ..
144 1 pfleura2
      EXTERNAL XERBLA
145 1 pfleura2
*     ..
146 1 pfleura2
*     .. Intrinsic Functions ..
147 1 pfleura2
      INTRINSIC MAX,MIN
148 1 pfleura2
*     ..
149 1 pfleura2
*
150 1 pfleura2
*     Test the input parameters.
151 1 pfleura2
*
152 1 pfleura2
      INFO = 0
153 1 pfleura2
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
154 1 pfleura2
          INFO = 1
155 1 pfleura2
      ELSE IF (N.LT.0) THEN
156 1 pfleura2
          INFO = 2
157 1 pfleura2
      ELSE IF (K.LT.0) THEN
158 1 pfleura2
          INFO = 3
159 1 pfleura2
      ELSE IF (LDA.LT. (K+1)) THEN
160 1 pfleura2
          INFO = 6
161 1 pfleura2
      ELSE IF (INCX.EQ.0) THEN
162 1 pfleura2
          INFO = 8
163 1 pfleura2
      ELSE IF (INCY.EQ.0) THEN
164 1 pfleura2
          INFO = 11
165 1 pfleura2
      END IF
166 1 pfleura2
      IF (INFO.NE.0) THEN
167 1 pfleura2
          CALL XERBLA('SSBMV ',INFO)
168 1 pfleura2
          RETURN
169 1 pfleura2
      END IF
170 1 pfleura2
*
171 1 pfleura2
*     Quick return if possible.
172 1 pfleura2
*
173 1 pfleura2
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
174 1 pfleura2
*
175 1 pfleura2
*     Set up the start points in  X  and  Y.
176 1 pfleura2
*
177 1 pfleura2
      IF (INCX.GT.0) THEN
178 1 pfleura2
          KX = 1
179 1 pfleura2
      ELSE
180 1 pfleura2
          KX = 1 - (N-1)*INCX
181 1 pfleura2
      END IF
182 1 pfleura2
      IF (INCY.GT.0) THEN
183 1 pfleura2
          KY = 1
184 1 pfleura2
      ELSE
185 1 pfleura2
          KY = 1 - (N-1)*INCY
186 1 pfleura2
      END IF
187 1 pfleura2
*
188 1 pfleura2
*     Start the operations. In this version the elements of the array A
189 1 pfleura2
*     are accessed sequentially with one pass through A.
190 1 pfleura2
*
191 1 pfleura2
*     First form  y := beta*y.
192 1 pfleura2
*
193 1 pfleura2
      IF (BETA.NE.ONE) THEN
194 1 pfleura2
          IF (INCY.EQ.1) THEN
195 1 pfleura2
              IF (BETA.EQ.ZERO) THEN
196 1 pfleura2
                  DO 10 I = 1,N
197 1 pfleura2
                      Y(I) = ZERO
198 1 pfleura2
   10             CONTINUE
199 1 pfleura2
              ELSE
200 1 pfleura2
                  DO 20 I = 1,N
201 1 pfleura2
                      Y(I) = BETA*Y(I)
202 1 pfleura2
   20             CONTINUE
203 1 pfleura2
              END IF
204 1 pfleura2
          ELSE
205 1 pfleura2
              IY = KY
206 1 pfleura2
              IF (BETA.EQ.ZERO) THEN
207 1 pfleura2
                  DO 30 I = 1,N
208 1 pfleura2
                      Y(IY) = ZERO
209 1 pfleura2
                      IY = IY + INCY
210 1 pfleura2
   30             CONTINUE
211 1 pfleura2
              ELSE
212 1 pfleura2
                  DO 40 I = 1,N
213 1 pfleura2
                      Y(IY) = BETA*Y(IY)
214 1 pfleura2
                      IY = IY + INCY
215 1 pfleura2
   40             CONTINUE
216 1 pfleura2
              END IF
217 1 pfleura2
          END IF
218 1 pfleura2
      END IF
219 1 pfleura2
      IF (ALPHA.EQ.ZERO) RETURN
220 1 pfleura2
      IF (LSAME(UPLO,'U')) THEN
221 1 pfleura2
*
222 1 pfleura2
*        Form  y  when upper triangle of A is stored.
223 1 pfleura2
*
224 1 pfleura2
          KPLUS1 = K + 1
225 1 pfleura2
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
226 1 pfleura2
              DO 60 J = 1,N
227 1 pfleura2
                  TEMP1 = ALPHA*X(J)
228 1 pfleura2
                  TEMP2 = ZERO
229 1 pfleura2
                  L = KPLUS1 - J
230 1 pfleura2
                  DO 50 I = MAX(1,J-K),J - 1
231 1 pfleura2
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
232 1 pfleura2
                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
233 1 pfleura2
   50             CONTINUE
234 1 pfleura2
                  Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
235 1 pfleura2
   60         CONTINUE
236 1 pfleura2
          ELSE
237 1 pfleura2
              JX = KX
238 1 pfleura2
              JY = KY
239 1 pfleura2
              DO 80 J = 1,N
240 1 pfleura2
                  TEMP1 = ALPHA*X(JX)
241 1 pfleura2
                  TEMP2 = ZERO
242 1 pfleura2
                  IX = KX
243 1 pfleura2
                  IY = KY
244 1 pfleura2
                  L = KPLUS1 - J
245 1 pfleura2
                  DO 70 I = MAX(1,J-K),J - 1
246 1 pfleura2
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
247 1 pfleura2
                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
248 1 pfleura2
                      IX = IX + INCX
249 1 pfleura2
                      IY = IY + INCY
250 1 pfleura2
   70             CONTINUE
251 1 pfleura2
                  Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
252 1 pfleura2
                  JX = JX + INCX
253 1 pfleura2
                  JY = JY + INCY
254 1 pfleura2
                  IF (J.GT.K) THEN
255 1 pfleura2
                      KX = KX + INCX
256 1 pfleura2
                      KY = KY + INCY
257 1 pfleura2
                  END IF
258 1 pfleura2
   80         CONTINUE
259 1 pfleura2
          END IF
260 1 pfleura2
      ELSE
261 1 pfleura2
*
262 1 pfleura2
*        Form  y  when lower triangle of A is stored.
263 1 pfleura2
*
264 1 pfleura2
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
265 1 pfleura2
              DO 100 J = 1,N
266 1 pfleura2
                  TEMP1 = ALPHA*X(J)
267 1 pfleura2
                  TEMP2 = ZERO
268 1 pfleura2
                  Y(J) = Y(J) + TEMP1*A(1,J)
269 1 pfleura2
                  L = 1 - J
270 1 pfleura2
                  DO 90 I = J + 1,MIN(N,J+K)
271 1 pfleura2
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
272 1 pfleura2
                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
273 1 pfleura2
   90             CONTINUE
274 1 pfleura2
                  Y(J) = Y(J) + ALPHA*TEMP2
275 1 pfleura2
  100         CONTINUE
276 1 pfleura2
          ELSE
277 1 pfleura2
              JX = KX
278 1 pfleura2
              JY = KY
279 1 pfleura2
              DO 120 J = 1,N
280 1 pfleura2
                  TEMP1 = ALPHA*X(JX)
281 1 pfleura2
                  TEMP2 = ZERO
282 1 pfleura2
                  Y(JY) = Y(JY) + TEMP1*A(1,J)
283 1 pfleura2
                  L = 1 - J
284 1 pfleura2
                  IX = JX
285 1 pfleura2
                  IY = JY
286 1 pfleura2
                  DO 110 I = J + 1,MIN(N,J+K)
287 1 pfleura2
                      IX = IX + INCX
288 1 pfleura2
                      IY = IY + INCY
289 1 pfleura2
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
290 1 pfleura2
                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
291 1 pfleura2
  110             CONTINUE
292 1 pfleura2
                  Y(JY) = Y(JY) + ALPHA*TEMP2
293 1 pfleura2
                  JX = JX + INCX
294 1 pfleura2
                  JY = JY + INCY
295 1 pfleura2
  120         CONTINUE
296 1 pfleura2
          END IF
297 1 pfleura2
      END IF
298 1 pfleura2
*
299 1 pfleura2
      RETURN
300 1 pfleura2
*
301 1 pfleura2
*     End of SSBMV .
302 1 pfleura2
*
303 1 pfleura2
      END