Statistiques
| Révision :

root / src / blas / chpr.f @ 5

Historique | Voir | Annoter | Télécharger (6,58 ko)

1 1 pfleura2
      SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
2 1 pfleura2
*     .. Scalar Arguments ..
3 1 pfleura2
      REAL ALPHA
4 1 pfleura2
      INTEGER INCX,N
5 1 pfleura2
      CHARACTER UPLO
6 1 pfleura2
*     ..
7 1 pfleura2
*     .. Array Arguments ..
8 1 pfleura2
      COMPLEX AP(*),X(*)
9 1 pfleura2
*     ..
10 1 pfleura2
*
11 1 pfleura2
*  Purpose
12 1 pfleura2
*  =======
13 1 pfleura2
*
14 1 pfleura2
*  CHPR    performs the hermitian rank 1 operation
15 1 pfleura2
*
16 1 pfleura2
*     A := alpha*x*conjg( x' ) + A,
17 1 pfleura2
*
18 1 pfleura2
*  where alpha is a real scalar, x is an n element vector and A is an
19 1 pfleura2
*  n by n hermitian matrix, supplied in packed form.
20 1 pfleura2
*
21 1 pfleura2
*  Arguments
22 1 pfleura2
*  ==========
23 1 pfleura2
*
24 1 pfleura2
*  UPLO   - CHARACTER*1.
25 1 pfleura2
*           On entry, UPLO specifies whether the upper or lower
26 1 pfleura2
*           triangular part of the matrix A is supplied in the packed
27 1 pfleura2
*           array AP as follows:
28 1 pfleura2
*
29 1 pfleura2
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 pfleura2
*                                  supplied in AP.
31 1 pfleura2
*
32 1 pfleura2
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 pfleura2
*                                  supplied in AP.
34 1 pfleura2
*
35 1 pfleura2
*           Unchanged on exit.
36 1 pfleura2
*
37 1 pfleura2
*  N      - INTEGER.
38 1 pfleura2
*           On entry, N specifies the order of the matrix A.
39 1 pfleura2
*           N must be at least zero.
40 1 pfleura2
*           Unchanged on exit.
41 1 pfleura2
*
42 1 pfleura2
*  ALPHA  - REAL            .
43 1 pfleura2
*           On entry, ALPHA specifies the scalar alpha.
44 1 pfleura2
*           Unchanged on exit.
45 1 pfleura2
*
46 1 pfleura2
*  X      - COMPLEX          array of dimension at least
47 1 pfleura2
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 pfleura2
*           Before entry, the incremented array X must contain the n
49 1 pfleura2
*           element vector x.
50 1 pfleura2
*           Unchanged on exit.
51 1 pfleura2
*
52 1 pfleura2
*  INCX   - INTEGER.
53 1 pfleura2
*           On entry, INCX specifies the increment for the elements of
54 1 pfleura2
*           X. INCX must not be zero.
55 1 pfleura2
*           Unchanged on exit.
56 1 pfleura2
*
57 1 pfleura2
*  AP     - COMPLEX          array of DIMENSION at least
58 1 pfleura2
*           ( ( n*( n + 1 ) )/2 ).
59 1 pfleura2
*           Before entry with  UPLO = 'U' or 'u', the array AP must
60 1 pfleura2
*           contain the upper triangular part of the hermitian matrix
61 1 pfleura2
*           packed sequentially, column by column, so that AP( 1 )
62 1 pfleura2
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
63 1 pfleura2
*           and a( 2, 2 ) respectively, and so on. On exit, the array
64 1 pfleura2
*           AP is overwritten by the upper triangular part of the
65 1 pfleura2
*           updated matrix.
66 1 pfleura2
*           Before entry with UPLO = 'L' or 'l', the array AP must
67 1 pfleura2
*           contain the lower triangular part of the hermitian matrix
68 1 pfleura2
*           packed sequentially, column by column, so that AP( 1 )
69 1 pfleura2
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
70 1 pfleura2
*           and a( 3, 1 ) respectively, and so on. On exit, the array
71 1 pfleura2
*           AP is overwritten by the lower triangular part of the
72 1 pfleura2
*           updated matrix.
73 1 pfleura2
*           Note that the imaginary parts of the diagonal elements need
74 1 pfleura2
*           not be set, they are assumed to be zero, and on exit they
75 1 pfleura2
*           are set to zero.
76 1 pfleura2
*
77 1 pfleura2
*
78 1 pfleura2
*  Level 2 Blas routine.
79 1 pfleura2
*
80 1 pfleura2
*  -- Written on 22-October-1986.
81 1 pfleura2
*     Jack Dongarra, Argonne National Lab.
82 1 pfleura2
*     Jeremy Du Croz, Nag Central Office.
83 1 pfleura2
*     Sven Hammarling, Nag Central Office.
84 1 pfleura2
*     Richard Hanson, Sandia National Labs.
85 1 pfleura2
*
86 1 pfleura2
*
87 1 pfleura2
*     .. Parameters ..
88 1 pfleura2
      COMPLEX ZERO
89 1 pfleura2
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
90 1 pfleura2
*     ..
91 1 pfleura2
*     .. Local Scalars ..
92 1 pfleura2
      COMPLEX TEMP
93 1 pfleura2
      INTEGER I,INFO,IX,J,JX,K,KK,KX
94 1 pfleura2
*     ..
95 1 pfleura2
*     .. External Functions ..
96 1 pfleura2
      LOGICAL LSAME
97 1 pfleura2
      EXTERNAL LSAME
98 1 pfleura2
*     ..
99 1 pfleura2
*     .. External Subroutines ..
100 1 pfleura2
      EXTERNAL XERBLA
101 1 pfleura2
*     ..
102 1 pfleura2
*     .. Intrinsic Functions ..
103 1 pfleura2
      INTRINSIC CONJG,REAL
104 1 pfleura2
*     ..
105 1 pfleura2
*
106 1 pfleura2
*     Test the input parameters.
107 1 pfleura2
*
108 1 pfleura2
      INFO = 0
109 1 pfleura2
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
110 1 pfleura2
          INFO = 1
111 1 pfleura2
      ELSE IF (N.LT.0) THEN
112 1 pfleura2
          INFO = 2
113 1 pfleura2
      ELSE IF (INCX.EQ.0) THEN
114 1 pfleura2
          INFO = 5
115 1 pfleura2
      END IF
116 1 pfleura2
      IF (INFO.NE.0) THEN
117 1 pfleura2
          CALL XERBLA('CHPR  ',INFO)
118 1 pfleura2
          RETURN
119 1 pfleura2
      END IF
120 1 pfleura2
*
121 1 pfleura2
*     Quick return if possible.
122 1 pfleura2
*
123 1 pfleura2
      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
124 1 pfleura2
*
125 1 pfleura2
*     Set the start point in X if the increment is not unity.
126 1 pfleura2
*
127 1 pfleura2
      IF (INCX.LE.0) THEN
128 1 pfleura2
          KX = 1 - (N-1)*INCX
129 1 pfleura2
      ELSE IF (INCX.NE.1) THEN
130 1 pfleura2
          KX = 1
131 1 pfleura2
      END IF
132 1 pfleura2
*
133 1 pfleura2
*     Start the operations. In this version the elements of the array AP
134 1 pfleura2
*     are accessed sequentially with one pass through AP.
135 1 pfleura2
*
136 1 pfleura2
      KK = 1
137 1 pfleura2
      IF (LSAME(UPLO,'U')) THEN
138 1 pfleura2
*
139 1 pfleura2
*        Form  A  when upper triangle is stored in AP.
140 1 pfleura2
*
141 1 pfleura2
          IF (INCX.EQ.1) THEN
142 1 pfleura2
              DO 20 J = 1,N
143 1 pfleura2
                  IF (X(J).NE.ZERO) THEN
144 1 pfleura2
                      TEMP = ALPHA*CONJG(X(J))
145 1 pfleura2
                      K = KK
146 1 pfleura2
                      DO 10 I = 1,J - 1
147 1 pfleura2
                          AP(K) = AP(K) + X(I)*TEMP
148 1 pfleura2
                          K = K + 1
149 1 pfleura2
   10                 CONTINUE
150 1 pfleura2
                      AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
151 1 pfleura2
                  ELSE
152 1 pfleura2
                      AP(KK+J-1) = REAL(AP(KK+J-1))
153 1 pfleura2
                  END IF
154 1 pfleura2
                  KK = KK + J
155 1 pfleura2
   20         CONTINUE
156 1 pfleura2
          ELSE
157 1 pfleura2
              JX = KX
158 1 pfleura2
              DO 40 J = 1,N
159 1 pfleura2
                  IF (X(JX).NE.ZERO) THEN
160 1 pfleura2
                      TEMP = ALPHA*CONJG(X(JX))
161 1 pfleura2
                      IX = KX
162 1 pfleura2
                      DO 30 K = KK,KK + J - 2
163 1 pfleura2
                          AP(K) = AP(K) + X(IX)*TEMP
164 1 pfleura2
                          IX = IX + INCX
165 1 pfleura2
   30                 CONTINUE
166 1 pfleura2
                      AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
167 1 pfleura2
                  ELSE
168 1 pfleura2
                      AP(KK+J-1) = REAL(AP(KK+J-1))
169 1 pfleura2
                  END IF
170 1 pfleura2
                  JX = JX + INCX
171 1 pfleura2
                  KK = KK + J
172 1 pfleura2
   40         CONTINUE
173 1 pfleura2
          END IF
174 1 pfleura2
      ELSE
175 1 pfleura2
*
176 1 pfleura2
*        Form  A  when lower triangle is stored in AP.
177 1 pfleura2
*
178 1 pfleura2
          IF (INCX.EQ.1) THEN
179 1 pfleura2
              DO 60 J = 1,N
180 1 pfleura2
                  IF (X(J).NE.ZERO) THEN
181 1 pfleura2
                      TEMP = ALPHA*CONJG(X(J))
182 1 pfleura2
                      AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
183 1 pfleura2
                      K = KK + 1
184 1 pfleura2
                      DO 50 I = J + 1,N
185 1 pfleura2
                          AP(K) = AP(K) + X(I)*TEMP
186 1 pfleura2
                          K = K + 1
187 1 pfleura2
   50                 CONTINUE
188 1 pfleura2
                  ELSE
189 1 pfleura2
                      AP(KK) = REAL(AP(KK))
190 1 pfleura2
                  END IF
191 1 pfleura2
                  KK = KK + N - J + 1
192 1 pfleura2
   60         CONTINUE
193 1 pfleura2
          ELSE
194 1 pfleura2
              JX = KX
195 1 pfleura2
              DO 80 J = 1,N
196 1 pfleura2
                  IF (X(JX).NE.ZERO) THEN
197 1 pfleura2
                      TEMP = ALPHA*CONJG(X(JX))
198 1 pfleura2
                      AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
199 1 pfleura2
                      IX = JX
200 1 pfleura2
                      DO 70 K = KK + 1,KK + N - J
201 1 pfleura2
                          IX = IX + INCX
202 1 pfleura2
                          AP(K) = AP(K) + X(IX)*TEMP
203 1 pfleura2
   70                 CONTINUE
204 1 pfleura2
                  ELSE
205 1 pfleura2
                      AP(KK) = REAL(AP(KK))
206 1 pfleura2
                  END IF
207 1 pfleura2
                  JX = JX + INCX
208 1 pfleura2
                  KK = KK + N - J + 1
209 1 pfleura2
   80         CONTINUE
210 1 pfleura2
          END IF
211 1 pfleura2
      END IF
212 1 pfleura2
*
213 1 pfleura2
      RETURN
214 1 pfleura2
*
215 1 pfleura2
*     End of CHPR  .
216 1 pfleura2
*
217 1 pfleura2
      END