root / src / blas / zherk.f @ 4
Historique | Voir | Annoter | Télécharger (10,52 ko)
1 |
SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE PRECISION ALPHA,BETA |
4 |
INTEGER K,LDA,LDC,N |
5 |
CHARACTER TRANS,UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX A(LDA,*),C(LDC,*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHERK performs one of the hermitian rank k operations |
15 |
* |
16 |
* C := alpha*A*conjg( A' ) + beta*C, |
17 |
* |
18 |
* or |
19 |
* |
20 |
* C := alpha*conjg( A' )*A + beta*C, |
21 |
* |
22 |
* where alpha and beta are real scalars, C is an n by n hermitian |
23 |
* matrix and A is an n by k matrix in the first case and a k by n |
24 |
* matrix in the second case. |
25 |
* |
26 |
* Arguments |
27 |
* ========== |
28 |
* |
29 |
* UPLO - CHARACTER*1. |
30 |
* On entry, UPLO specifies whether the upper or lower |
31 |
* triangular part of the array C is to be referenced as |
32 |
* follows: |
33 |
* |
34 |
* UPLO = 'U' or 'u' Only the upper triangular part of C |
35 |
* is to be referenced. |
36 |
* |
37 |
* UPLO = 'L' or 'l' Only the lower triangular part of C |
38 |
* is to be referenced. |
39 |
* |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* TRANS - CHARACTER*1. |
43 |
* On entry, TRANS specifies the operation to be performed as |
44 |
* follows: |
45 |
* |
46 |
* TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. |
47 |
* |
48 |
* TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. |
49 |
* |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* N - INTEGER. |
53 |
* On entry, N specifies the order of the matrix C. N must be |
54 |
* at least zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* K - INTEGER. |
58 |
* On entry with TRANS = 'N' or 'n', K specifies the number |
59 |
* of columns of the matrix A, and on entry with |
60 |
* TRANS = 'C' or 'c', K specifies the number of rows of the |
61 |
* matrix A. K must be at least zero. |
62 |
* Unchanged on exit. |
63 |
* |
64 |
* ALPHA - DOUBLE PRECISION . |
65 |
* On entry, ALPHA specifies the scalar alpha. |
66 |
* Unchanged on exit. |
67 |
* |
68 |
* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is |
69 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
70 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
71 |
* part of the array A must contain the matrix A, otherwise |
72 |
* the leading k by n part of the array A must contain the |
73 |
* matrix A. |
74 |
* Unchanged on exit. |
75 |
* |
76 |
* LDA - INTEGER. |
77 |
* On entry, LDA specifies the first dimension of A as declared |
78 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
79 |
* then LDA must be at least max( 1, n ), otherwise LDA must |
80 |
* be at least max( 1, k ). |
81 |
* Unchanged on exit. |
82 |
* |
83 |
* BETA - DOUBLE PRECISION. |
84 |
* On entry, BETA specifies the scalar beta. |
85 |
* Unchanged on exit. |
86 |
* |
87 |
* C - COMPLEX*16 array of DIMENSION ( LDC, n ). |
88 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
89 |
* upper triangular part of the array C must contain the upper |
90 |
* triangular part of the hermitian matrix and the strictly |
91 |
* lower triangular part of C is not referenced. On exit, the |
92 |
* upper triangular part of the array C is overwritten by the |
93 |
* upper triangular part of the updated matrix. |
94 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
95 |
* lower triangular part of the array C must contain the lower |
96 |
* triangular part of the hermitian matrix and the strictly |
97 |
* upper triangular part of C is not referenced. On exit, the |
98 |
* lower triangular part of the array C is overwritten by the |
99 |
* lower triangular part of the updated matrix. |
100 |
* Note that the imaginary parts of the diagonal elements need |
101 |
* not be set, they are assumed to be zero, and on exit they |
102 |
* are set to zero. |
103 |
* |
104 |
* LDC - INTEGER. |
105 |
* On entry, LDC specifies the first dimension of C as declared |
106 |
* in the calling (sub) program. LDC must be at least |
107 |
* max( 1, n ). |
108 |
* Unchanged on exit. |
109 |
* |
110 |
* |
111 |
* Level 3 Blas routine. |
112 |
* |
113 |
* -- Written on 8-February-1989. |
114 |
* Jack Dongarra, Argonne National Laboratory. |
115 |
* Iain Duff, AERE Harwell. |
116 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
117 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
118 |
* |
119 |
* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. |
120 |
* Ed Anderson, Cray Research Inc. |
121 |
* |
122 |
* |
123 |
* .. External Functions .. |
124 |
LOGICAL LSAME |
125 |
EXTERNAL LSAME |
126 |
* .. |
127 |
* .. External Subroutines .. |
128 |
EXTERNAL XERBLA |
129 |
* .. |
130 |
* .. Intrinsic Functions .. |
131 |
INTRINSIC DBLE,DCMPLX,DCONJG,MAX |
132 |
* .. |
133 |
* .. Local Scalars .. |
134 |
DOUBLE COMPLEX TEMP |
135 |
DOUBLE PRECISION RTEMP |
136 |
INTEGER I,INFO,J,L,NROWA |
137 |
LOGICAL UPPER |
138 |
* .. |
139 |
* .. Parameters .. |
140 |
DOUBLE PRECISION ONE,ZERO |
141 |
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) |
142 |
* .. |
143 |
* |
144 |
* Test the input parameters. |
145 |
* |
146 |
IF (LSAME(TRANS,'N')) THEN |
147 |
NROWA = N |
148 |
ELSE |
149 |
NROWA = K |
150 |
END IF |
151 |
UPPER = LSAME(UPLO,'U') |
152 |
* |
153 |
INFO = 0 |
154 |
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
155 |
INFO = 1 |
156 |
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
157 |
+ (.NOT.LSAME(TRANS,'C'))) THEN |
158 |
INFO = 2 |
159 |
ELSE IF (N.LT.0) THEN |
160 |
INFO = 3 |
161 |
ELSE IF (K.LT.0) THEN |
162 |
INFO = 4 |
163 |
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
164 |
INFO = 7 |
165 |
ELSE IF (LDC.LT.MAX(1,N)) THEN |
166 |
INFO = 10 |
167 |
END IF |
168 |
IF (INFO.NE.0) THEN |
169 |
CALL XERBLA('ZHERK ',INFO) |
170 |
RETURN |
171 |
END IF |
172 |
* |
173 |
* Quick return if possible. |
174 |
* |
175 |
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
176 |
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
177 |
* |
178 |
* And when alpha.eq.zero. |
179 |
* |
180 |
IF (ALPHA.EQ.ZERO) THEN |
181 |
IF (UPPER) THEN |
182 |
IF (BETA.EQ.ZERO) THEN |
183 |
DO 20 J = 1,N |
184 |
DO 10 I = 1,J |
185 |
C(I,J) = ZERO |
186 |
10 CONTINUE |
187 |
20 CONTINUE |
188 |
ELSE |
189 |
DO 40 J = 1,N |
190 |
DO 30 I = 1,J - 1 |
191 |
C(I,J) = BETA*C(I,J) |
192 |
30 CONTINUE |
193 |
C(J,J) = BETA*DBLE(C(J,J)) |
194 |
40 CONTINUE |
195 |
END IF |
196 |
ELSE |
197 |
IF (BETA.EQ.ZERO) THEN |
198 |
DO 60 J = 1,N |
199 |
DO 50 I = J,N |
200 |
C(I,J) = ZERO |
201 |
50 CONTINUE |
202 |
60 CONTINUE |
203 |
ELSE |
204 |
DO 80 J = 1,N |
205 |
C(J,J) = BETA*DBLE(C(J,J)) |
206 |
DO 70 I = J + 1,N |
207 |
C(I,J) = BETA*C(I,J) |
208 |
70 CONTINUE |
209 |
80 CONTINUE |
210 |
END IF |
211 |
END IF |
212 |
RETURN |
213 |
END IF |
214 |
* |
215 |
* Start the operations. |
216 |
* |
217 |
IF (LSAME(TRANS,'N')) THEN |
218 |
* |
219 |
* Form C := alpha*A*conjg( A' ) + beta*C. |
220 |
* |
221 |
IF (UPPER) THEN |
222 |
DO 130 J = 1,N |
223 |
IF (BETA.EQ.ZERO) THEN |
224 |
DO 90 I = 1,J |
225 |
C(I,J) = ZERO |
226 |
90 CONTINUE |
227 |
ELSE IF (BETA.NE.ONE) THEN |
228 |
DO 100 I = 1,J - 1 |
229 |
C(I,J) = BETA*C(I,J) |
230 |
100 CONTINUE |
231 |
C(J,J) = BETA*DBLE(C(J,J)) |
232 |
ELSE |
233 |
C(J,J) = DBLE(C(J,J)) |
234 |
END IF |
235 |
DO 120 L = 1,K |
236 |
IF (A(J,L).NE.DCMPLX(ZERO)) THEN |
237 |
TEMP = ALPHA*DCONJG(A(J,L)) |
238 |
DO 110 I = 1,J - 1 |
239 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
240 |
110 CONTINUE |
241 |
C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(I,L)) |
242 |
END IF |
243 |
120 CONTINUE |
244 |
130 CONTINUE |
245 |
ELSE |
246 |
DO 180 J = 1,N |
247 |
IF (BETA.EQ.ZERO) THEN |
248 |
DO 140 I = J,N |
249 |
C(I,J) = ZERO |
250 |
140 CONTINUE |
251 |
ELSE IF (BETA.NE.ONE) THEN |
252 |
C(J,J) = BETA*DBLE(C(J,J)) |
253 |
DO 150 I = J + 1,N |
254 |
C(I,J) = BETA*C(I,J) |
255 |
150 CONTINUE |
256 |
ELSE |
257 |
C(J,J) = DBLE(C(J,J)) |
258 |
END IF |
259 |
DO 170 L = 1,K |
260 |
IF (A(J,L).NE.DCMPLX(ZERO)) THEN |
261 |
TEMP = ALPHA*DCONJG(A(J,L)) |
262 |
C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(J,L)) |
263 |
DO 160 I = J + 1,N |
264 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
265 |
160 CONTINUE |
266 |
END IF |
267 |
170 CONTINUE |
268 |
180 CONTINUE |
269 |
END IF |
270 |
ELSE |
271 |
* |
272 |
* Form C := alpha*conjg( A' )*A + beta*C. |
273 |
* |
274 |
IF (UPPER) THEN |
275 |
DO 220 J = 1,N |
276 |
DO 200 I = 1,J - 1 |
277 |
TEMP = ZERO |
278 |
DO 190 L = 1,K |
279 |
TEMP = TEMP + DCONJG(A(L,I))*A(L,J) |
280 |
190 CONTINUE |
281 |
IF (BETA.EQ.ZERO) THEN |
282 |
C(I,J) = ALPHA*TEMP |
283 |
ELSE |
284 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
285 |
END IF |
286 |
200 CONTINUE |
287 |
RTEMP = ZERO |
288 |
DO 210 L = 1,K |
289 |
RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J) |
290 |
210 CONTINUE |
291 |
IF (BETA.EQ.ZERO) THEN |
292 |
C(J,J) = ALPHA*RTEMP |
293 |
ELSE |
294 |
C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J)) |
295 |
END IF |
296 |
220 CONTINUE |
297 |
ELSE |
298 |
DO 260 J = 1,N |
299 |
RTEMP = ZERO |
300 |
DO 230 L = 1,K |
301 |
RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J) |
302 |
230 CONTINUE |
303 |
IF (BETA.EQ.ZERO) THEN |
304 |
C(J,J) = ALPHA*RTEMP |
305 |
ELSE |
306 |
C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J)) |
307 |
END IF |
308 |
DO 250 I = J + 1,N |
309 |
TEMP = ZERO |
310 |
DO 240 L = 1,K |
311 |
TEMP = TEMP + DCONJG(A(L,I))*A(L,J) |
312 |
240 CONTINUE |
313 |
IF (BETA.EQ.ZERO) THEN |
314 |
C(I,J) = ALPHA*TEMP |
315 |
ELSE |
316 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
317 |
END IF |
318 |
250 CONTINUE |
319 |
260 CONTINUE |
320 |
END IF |
321 |
END IF |
322 |
* |
323 |
RETURN |
324 |
* |
325 |
* End of ZHERK . |
326 |
* |
327 |
END |