root / src / blas / zher.f @ 4
Historique | Voir | Annoter | Télécharger (6,47 ko)
1 |
SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE PRECISION ALPHA |
4 |
INTEGER INCX,LDA,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX A(LDA,*),X(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHER performs the hermitian rank 1 operation |
15 |
* |
16 |
* A := alpha*x*conjg( x' ) + A, |
17 |
* |
18 |
* where alpha is a real scalar, x is an n element vector and A is an |
19 |
* n by n hermitian matrix. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the array A is to be referenced as |
27 |
* follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' Only the upper triangular part of A |
30 |
* is to be referenced. |
31 |
* |
32 |
* UPLO = 'L' or 'l' Only the lower triangular part of A |
33 |
* is to be referenced. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - DOUBLE PRECISION. |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* X - COMPLEX*16 array of dimension at least |
47 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
48 |
* Before entry, the incremented array X must contain the n |
49 |
* element vector x. |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* INCX - INTEGER. |
53 |
* On entry, INCX specifies the increment for the elements of |
54 |
* X. INCX must not be zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
58 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
59 |
* upper triangular part of the array A must contain the upper |
60 |
* triangular part of the hermitian matrix and the strictly |
61 |
* lower triangular part of A is not referenced. On exit, the |
62 |
* upper triangular part of the array A is overwritten by the |
63 |
* upper triangular part of the updated matrix. |
64 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
65 |
* lower triangular part of the array A must contain the lower |
66 |
* triangular part of the hermitian matrix and the strictly |
67 |
* upper triangular part of A is not referenced. On exit, the |
68 |
* lower triangular part of the array A is overwritten by the |
69 |
* lower triangular part of the updated matrix. |
70 |
* Note that the imaginary parts of the diagonal elements need |
71 |
* not be set, they are assumed to be zero, and on exit they |
72 |
* are set to zero. |
73 |
* |
74 |
* LDA - INTEGER. |
75 |
* On entry, LDA specifies the first dimension of A as declared |
76 |
* in the calling (sub) program. LDA must be at least |
77 |
* max( 1, n ). |
78 |
* Unchanged on exit. |
79 |
* |
80 |
* |
81 |
* Level 2 Blas routine. |
82 |
* |
83 |
* -- Written on 22-October-1986. |
84 |
* Jack Dongarra, Argonne National Lab. |
85 |
* Jeremy Du Croz, Nag Central Office. |
86 |
* Sven Hammarling, Nag Central Office. |
87 |
* Richard Hanson, Sandia National Labs. |
88 |
* |
89 |
* |
90 |
* .. Parameters .. |
91 |
DOUBLE COMPLEX ZERO |
92 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
93 |
* .. |
94 |
* .. Local Scalars .. |
95 |
DOUBLE COMPLEX TEMP |
96 |
INTEGER I,INFO,IX,J,JX,KX |
97 |
* .. |
98 |
* .. External Functions .. |
99 |
LOGICAL LSAME |
100 |
EXTERNAL LSAME |
101 |
* .. |
102 |
* .. External Subroutines .. |
103 |
EXTERNAL XERBLA |
104 |
* .. |
105 |
* .. Intrinsic Functions .. |
106 |
INTRINSIC DBLE,DCONJG,MAX |
107 |
* .. |
108 |
* |
109 |
* Test the input parameters. |
110 |
* |
111 |
INFO = 0 |
112 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
113 |
INFO = 1 |
114 |
ELSE IF (N.LT.0) THEN |
115 |
INFO = 2 |
116 |
ELSE IF (INCX.EQ.0) THEN |
117 |
INFO = 5 |
118 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
119 |
INFO = 7 |
120 |
END IF |
121 |
IF (INFO.NE.0) THEN |
122 |
CALL XERBLA('ZHER ',INFO) |
123 |
RETURN |
124 |
END IF |
125 |
* |
126 |
* Quick return if possible. |
127 |
* |
128 |
IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN |
129 |
* |
130 |
* Set the start point in X if the increment is not unity. |
131 |
* |
132 |
IF (INCX.LE.0) THEN |
133 |
KX = 1 - (N-1)*INCX |
134 |
ELSE IF (INCX.NE.1) THEN |
135 |
KX = 1 |
136 |
END IF |
137 |
* |
138 |
* Start the operations. In this version the elements of A are |
139 |
* accessed sequentially with one pass through the triangular part |
140 |
* of A. |
141 |
* |
142 |
IF (LSAME(UPLO,'U')) THEN |
143 |
* |
144 |
* Form A when A is stored in upper triangle. |
145 |
* |
146 |
IF (INCX.EQ.1) THEN |
147 |
DO 20 J = 1,N |
148 |
IF (X(J).NE.ZERO) THEN |
149 |
TEMP = ALPHA*DCONJG(X(J)) |
150 |
DO 10 I = 1,J - 1 |
151 |
A(I,J) = A(I,J) + X(I)*TEMP |
152 |
10 CONTINUE |
153 |
A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP) |
154 |
ELSE |
155 |
A(J,J) = DBLE(A(J,J)) |
156 |
END IF |
157 |
20 CONTINUE |
158 |
ELSE |
159 |
JX = KX |
160 |
DO 40 J = 1,N |
161 |
IF (X(JX).NE.ZERO) THEN |
162 |
TEMP = ALPHA*DCONJG(X(JX)) |
163 |
IX = KX |
164 |
DO 30 I = 1,J - 1 |
165 |
A(I,J) = A(I,J) + X(IX)*TEMP |
166 |
IX = IX + INCX |
167 |
30 CONTINUE |
168 |
A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP) |
169 |
ELSE |
170 |
A(J,J) = DBLE(A(J,J)) |
171 |
END IF |
172 |
JX = JX + INCX |
173 |
40 CONTINUE |
174 |
END IF |
175 |
ELSE |
176 |
* |
177 |
* Form A when A is stored in lower triangle. |
178 |
* |
179 |
IF (INCX.EQ.1) THEN |
180 |
DO 60 J = 1,N |
181 |
IF (X(J).NE.ZERO) THEN |
182 |
TEMP = ALPHA*DCONJG(X(J)) |
183 |
A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J)) |
184 |
DO 50 I = J + 1,N |
185 |
A(I,J) = A(I,J) + X(I)*TEMP |
186 |
50 CONTINUE |
187 |
ELSE |
188 |
A(J,J) = DBLE(A(J,J)) |
189 |
END IF |
190 |
60 CONTINUE |
191 |
ELSE |
192 |
JX = KX |
193 |
DO 80 J = 1,N |
194 |
IF (X(JX).NE.ZERO) THEN |
195 |
TEMP = ALPHA*DCONJG(X(JX)) |
196 |
A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX)) |
197 |
IX = JX |
198 |
DO 70 I = J + 1,N |
199 |
IX = IX + INCX |
200 |
A(I,J) = A(I,J) + X(IX)*TEMP |
201 |
70 CONTINUE |
202 |
ELSE |
203 |
A(J,J) = DBLE(A(J,J)) |
204 |
END IF |
205 |
JX = JX + INCX |
206 |
80 CONTINUE |
207 |
END IF |
208 |
END IF |
209 |
* |
210 |
RETURN |
211 |
* |
212 |
* End of ZHER . |
213 |
* |
214 |
END |