root / src / blas / ssyrk.f @ 4
Historique | Voir | Annoter | Télécharger (9 ko)
1 |
SUBROUTINE SSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
REAL ALPHA,BETA |
4 |
INTEGER K,LDA,LDC,N |
5 |
CHARACTER TRANS,UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
REAL A(LDA,*),C(LDC,*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* SSYRK performs one of the symmetric rank k operations |
15 |
* |
16 |
* C := alpha*A*A' + beta*C, |
17 |
* |
18 |
* or |
19 |
* |
20 |
* C := alpha*A'*A + beta*C, |
21 |
* |
22 |
* where alpha and beta are scalars, C is an n by n symmetric matrix |
23 |
* and A is an n by k matrix in the first case and a k by n matrix |
24 |
* in the second case. |
25 |
* |
26 |
* Arguments |
27 |
* ========== |
28 |
* |
29 |
* UPLO - CHARACTER*1. |
30 |
* On entry, UPLO specifies whether the upper or lower |
31 |
* triangular part of the array C is to be referenced as |
32 |
* follows: |
33 |
* |
34 |
* UPLO = 'U' or 'u' Only the upper triangular part of C |
35 |
* is to be referenced. |
36 |
* |
37 |
* UPLO = 'L' or 'l' Only the lower triangular part of C |
38 |
* is to be referenced. |
39 |
* |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* TRANS - CHARACTER*1. |
43 |
* On entry, TRANS specifies the operation to be performed as |
44 |
* follows: |
45 |
* |
46 |
* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. |
47 |
* |
48 |
* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. |
49 |
* |
50 |
* TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. |
51 |
* |
52 |
* Unchanged on exit. |
53 |
* |
54 |
* N - INTEGER. |
55 |
* On entry, N specifies the order of the matrix C. N must be |
56 |
* at least zero. |
57 |
* Unchanged on exit. |
58 |
* |
59 |
* K - INTEGER. |
60 |
* On entry with TRANS = 'N' or 'n', K specifies the number |
61 |
* of columns of the matrix A, and on entry with |
62 |
* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number |
63 |
* of rows of the matrix A. K must be at least zero. |
64 |
* Unchanged on exit. |
65 |
* |
66 |
* ALPHA - REAL . |
67 |
* On entry, ALPHA specifies the scalar alpha. |
68 |
* Unchanged on exit. |
69 |
* |
70 |
* A - REAL array of DIMENSION ( LDA, ka ), where ka is |
71 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
72 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
73 |
* part of the array A must contain the matrix A, otherwise |
74 |
* the leading k by n part of the array A must contain the |
75 |
* matrix A. |
76 |
* Unchanged on exit. |
77 |
* |
78 |
* LDA - INTEGER. |
79 |
* On entry, LDA specifies the first dimension of A as declared |
80 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
81 |
* then LDA must be at least max( 1, n ), otherwise LDA must |
82 |
* be at least max( 1, k ). |
83 |
* Unchanged on exit. |
84 |
* |
85 |
* BETA - REAL . |
86 |
* On entry, BETA specifies the scalar beta. |
87 |
* Unchanged on exit. |
88 |
* |
89 |
* C - REAL array of DIMENSION ( LDC, n ). |
90 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
91 |
* upper triangular part of the array C must contain the upper |
92 |
* triangular part of the symmetric matrix and the strictly |
93 |
* lower triangular part of C is not referenced. On exit, the |
94 |
* upper triangular part of the array C is overwritten by the |
95 |
* upper triangular part of the updated matrix. |
96 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
97 |
* lower triangular part of the array C must contain the lower |
98 |
* triangular part of the symmetric matrix and the strictly |
99 |
* upper triangular part of C is not referenced. On exit, the |
100 |
* lower triangular part of the array C is overwritten by the |
101 |
* lower triangular part of the updated matrix. |
102 |
* |
103 |
* LDC - INTEGER. |
104 |
* On entry, LDC specifies the first dimension of C as declared |
105 |
* in the calling (sub) program. LDC must be at least |
106 |
* max( 1, n ). |
107 |
* Unchanged on exit. |
108 |
* |
109 |
* |
110 |
* Level 3 Blas routine. |
111 |
* |
112 |
* -- Written on 8-February-1989. |
113 |
* Jack Dongarra, Argonne National Laboratory. |
114 |
* Iain Duff, AERE Harwell. |
115 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
116 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
117 |
* |
118 |
* |
119 |
* .. External Functions .. |
120 |
LOGICAL LSAME |
121 |
EXTERNAL LSAME |
122 |
* .. |
123 |
* .. External Subroutines .. |
124 |
EXTERNAL XERBLA |
125 |
* .. |
126 |
* .. Intrinsic Functions .. |
127 |
INTRINSIC MAX |
128 |
* .. |
129 |
* .. Local Scalars .. |
130 |
REAL TEMP |
131 |
INTEGER I,INFO,J,L,NROWA |
132 |
LOGICAL UPPER |
133 |
* .. |
134 |
* .. Parameters .. |
135 |
REAL ONE,ZERO |
136 |
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
137 |
* .. |
138 |
* |
139 |
* Test the input parameters. |
140 |
* |
141 |
IF (LSAME(TRANS,'N')) THEN |
142 |
NROWA = N |
143 |
ELSE |
144 |
NROWA = K |
145 |
END IF |
146 |
UPPER = LSAME(UPLO,'U') |
147 |
* |
148 |
INFO = 0 |
149 |
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
150 |
INFO = 1 |
151 |
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
152 |
+ (.NOT.LSAME(TRANS,'T')) .AND. |
153 |
+ (.NOT.LSAME(TRANS,'C'))) THEN |
154 |
INFO = 2 |
155 |
ELSE IF (N.LT.0) THEN |
156 |
INFO = 3 |
157 |
ELSE IF (K.LT.0) THEN |
158 |
INFO = 4 |
159 |
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
160 |
INFO = 7 |
161 |
ELSE IF (LDC.LT.MAX(1,N)) THEN |
162 |
INFO = 10 |
163 |
END IF |
164 |
IF (INFO.NE.0) THEN |
165 |
CALL XERBLA('SSYRK ',INFO) |
166 |
RETURN |
167 |
END IF |
168 |
* |
169 |
* Quick return if possible. |
170 |
* |
171 |
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
172 |
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
173 |
* |
174 |
* And when alpha.eq.zero. |
175 |
* |
176 |
IF (ALPHA.EQ.ZERO) THEN |
177 |
IF (UPPER) THEN |
178 |
IF (BETA.EQ.ZERO) THEN |
179 |
DO 20 J = 1,N |
180 |
DO 10 I = 1,J |
181 |
C(I,J) = ZERO |
182 |
10 CONTINUE |
183 |
20 CONTINUE |
184 |
ELSE |
185 |
DO 40 J = 1,N |
186 |
DO 30 I = 1,J |
187 |
C(I,J) = BETA*C(I,J) |
188 |
30 CONTINUE |
189 |
40 CONTINUE |
190 |
END IF |
191 |
ELSE |
192 |
IF (BETA.EQ.ZERO) THEN |
193 |
DO 60 J = 1,N |
194 |
DO 50 I = J,N |
195 |
C(I,J) = ZERO |
196 |
50 CONTINUE |
197 |
60 CONTINUE |
198 |
ELSE |
199 |
DO 80 J = 1,N |
200 |
DO 70 I = J,N |
201 |
C(I,J) = BETA*C(I,J) |
202 |
70 CONTINUE |
203 |
80 CONTINUE |
204 |
END IF |
205 |
END IF |
206 |
RETURN |
207 |
END IF |
208 |
* |
209 |
* Start the operations. |
210 |
* |
211 |
IF (LSAME(TRANS,'N')) THEN |
212 |
* |
213 |
* Form C := alpha*A*A' + beta*C. |
214 |
* |
215 |
IF (UPPER) THEN |
216 |
DO 130 J = 1,N |
217 |
IF (BETA.EQ.ZERO) THEN |
218 |
DO 90 I = 1,J |
219 |
C(I,J) = ZERO |
220 |
90 CONTINUE |
221 |
ELSE IF (BETA.NE.ONE) THEN |
222 |
DO 100 I = 1,J |
223 |
C(I,J) = BETA*C(I,J) |
224 |
100 CONTINUE |
225 |
END IF |
226 |
DO 120 L = 1,K |
227 |
IF (A(J,L).NE.ZERO) THEN |
228 |
TEMP = ALPHA*A(J,L) |
229 |
DO 110 I = 1,J |
230 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
231 |
110 CONTINUE |
232 |
END IF |
233 |
120 CONTINUE |
234 |
130 CONTINUE |
235 |
ELSE |
236 |
DO 180 J = 1,N |
237 |
IF (BETA.EQ.ZERO) THEN |
238 |
DO 140 I = J,N |
239 |
C(I,J) = ZERO |
240 |
140 CONTINUE |
241 |
ELSE IF (BETA.NE.ONE) THEN |
242 |
DO 150 I = J,N |
243 |
C(I,J) = BETA*C(I,J) |
244 |
150 CONTINUE |
245 |
END IF |
246 |
DO 170 L = 1,K |
247 |
IF (A(J,L).NE.ZERO) THEN |
248 |
TEMP = ALPHA*A(J,L) |
249 |
DO 160 I = J,N |
250 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
251 |
160 CONTINUE |
252 |
END IF |
253 |
170 CONTINUE |
254 |
180 CONTINUE |
255 |
END IF |
256 |
ELSE |
257 |
* |
258 |
* Form C := alpha*A'*A + beta*C. |
259 |
* |
260 |
IF (UPPER) THEN |
261 |
DO 210 J = 1,N |
262 |
DO 200 I = 1,J |
263 |
TEMP = ZERO |
264 |
DO 190 L = 1,K |
265 |
TEMP = TEMP + A(L,I)*A(L,J) |
266 |
190 CONTINUE |
267 |
IF (BETA.EQ.ZERO) THEN |
268 |
C(I,J) = ALPHA*TEMP |
269 |
ELSE |
270 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
271 |
END IF |
272 |
200 CONTINUE |
273 |
210 CONTINUE |
274 |
ELSE |
275 |
DO 240 J = 1,N |
276 |
DO 230 I = J,N |
277 |
TEMP = ZERO |
278 |
DO 220 L = 1,K |
279 |
TEMP = TEMP + A(L,I)*A(L,J) |
280 |
220 CONTINUE |
281 |
IF (BETA.EQ.ZERO) THEN |
282 |
C(I,J) = ALPHA*TEMP |
283 |
ELSE |
284 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
285 |
END IF |
286 |
230 CONTINUE |
287 |
240 CONTINUE |
288 |
END IF |
289 |
END IF |
290 |
* |
291 |
RETURN |
292 |
* |
293 |
* End of SSYRK . |
294 |
* |
295 |
END |