Statistiques
| Révision :

root / src / blas / dtpmv.f @ 4

Historique | Voir | Annoter | Télécharger (8,96 ko)

1
      SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      DOUBLE PRECISION AP(*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  DTPMV  performs one of the matrix-vector operations
14
*
15
*     x := A*x,   or   x := A'*x,
16
*
17
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18
*  upper or lower triangular matrix, supplied in packed form.
19
*
20
*  Arguments
21
*  ==========
22
*
23
*  UPLO   - CHARACTER*1.
24
*           On entry, UPLO specifies whether the matrix is an upper or
25
*           lower triangular matrix as follows:
26
*
27
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28
*
29
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30
*
31
*           Unchanged on exit.
32
*
33
*  TRANS  - CHARACTER*1.
34
*           On entry, TRANS specifies the operation to be performed as
35
*           follows:
36
*
37
*              TRANS = 'N' or 'n'   x := A*x.
38
*
39
*              TRANS = 'T' or 't'   x := A'*x.
40
*
41
*              TRANS = 'C' or 'c'   x := A'*x.
42
*
43
*           Unchanged on exit.
44
*
45
*  DIAG   - CHARACTER*1.
46
*           On entry, DIAG specifies whether or not A is unit
47
*           triangular as follows:
48
*
49
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50
*
51
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52
*                                  triangular.
53
*
54
*           Unchanged on exit.
55
*
56
*  N      - INTEGER.
57
*           On entry, N specifies the order of the matrix A.
58
*           N must be at least zero.
59
*           Unchanged on exit.
60
*
61
*  AP     - DOUBLE PRECISION array of DIMENSION at least
62
*           ( ( n*( n + 1 ) )/2 ).
63
*           Before entry with  UPLO = 'U' or 'u', the array AP must
64
*           contain the upper triangular matrix packed sequentially,
65
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
66
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
67
*           respectively, and so on.
68
*           Before entry with UPLO = 'L' or 'l', the array AP must
69
*           contain the lower triangular matrix packed sequentially,
70
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
71
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
72
*           respectively, and so on.
73
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74
*           A are not referenced, but are assumed to be unity.
75
*           Unchanged on exit.
76
*
77
*  X      - DOUBLE PRECISION array of dimension at least
78
*           ( 1 + ( n - 1 )*abs( INCX ) ).
79
*           Before entry, the incremented array X must contain the n
80
*           element vector x. On exit, X is overwritten with the
81
*           tranformed vector x.
82
*
83
*  INCX   - INTEGER.
84
*           On entry, INCX specifies the increment for the elements of
85
*           X. INCX must not be zero.
86
*           Unchanged on exit.
87
*
88
*
89
*  Level 2 Blas routine.
90
*
91
*  -- Written on 22-October-1986.
92
*     Jack Dongarra, Argonne National Lab.
93
*     Jeremy Du Croz, Nag Central Office.
94
*     Sven Hammarling, Nag Central Office.
95
*     Richard Hanson, Sandia National Labs.
96
*
97
*
98
*     .. Parameters ..
99
      DOUBLE PRECISION ZERO
100
      PARAMETER (ZERO=0.0D+0)
101
*     ..
102
*     .. Local Scalars ..
103
      DOUBLE PRECISION TEMP
104
      INTEGER I,INFO,IX,J,JX,K,KK,KX
105
      LOGICAL NOUNIT
106
*     ..
107
*     .. External Functions ..
108
      LOGICAL LSAME
109
      EXTERNAL LSAME
110
*     ..
111
*     .. External Subroutines ..
112
      EXTERNAL XERBLA
113
*     ..
114
*
115
*     Test the input parameters.
116
*
117
      INFO = 0
118
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
119
          INFO = 1
120
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
121
     +         .NOT.LSAME(TRANS,'C')) THEN
122
          INFO = 2
123
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
124
          INFO = 3
125
      ELSE IF (N.LT.0) THEN
126
          INFO = 4
127
      ELSE IF (INCX.EQ.0) THEN
128
          INFO = 7
129
      END IF
130
      IF (INFO.NE.0) THEN
131
          CALL XERBLA('DTPMV ',INFO)
132
          RETURN
133
      END IF
134
*
135
*     Quick return if possible.
136
*
137
      IF (N.EQ.0) RETURN
138
*
139
      NOUNIT = LSAME(DIAG,'N')
140
*
141
*     Set up the start point in X if the increment is not unity. This
142
*     will be  ( N - 1 )*INCX  too small for descending loops.
143
*
144
      IF (INCX.LE.0) THEN
145
          KX = 1 - (N-1)*INCX
146
      ELSE IF (INCX.NE.1) THEN
147
          KX = 1
148
      END IF
149
*
150
*     Start the operations. In this version the elements of AP are
151
*     accessed sequentially with one pass through AP.
152
*
153
      IF (LSAME(TRANS,'N')) THEN
154
*
155
*        Form  x:= A*x.
156
*
157
          IF (LSAME(UPLO,'U')) THEN
158
              KK = 1
159
              IF (INCX.EQ.1) THEN
160
                  DO 20 J = 1,N
161
                      IF (X(J).NE.ZERO) THEN
162
                          TEMP = X(J)
163
                          K = KK
164
                          DO 10 I = 1,J - 1
165
                              X(I) = X(I) + TEMP*AP(K)
166
                              K = K + 1
167
   10                     CONTINUE
168
                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
169
                      END IF
170
                      KK = KK + J
171
   20             CONTINUE
172
              ELSE
173
                  JX = KX
174
                  DO 40 J = 1,N
175
                      IF (X(JX).NE.ZERO) THEN
176
                          TEMP = X(JX)
177
                          IX = KX
178
                          DO 30 K = KK,KK + J - 2
179
                              X(IX) = X(IX) + TEMP*AP(K)
180
                              IX = IX + INCX
181
   30                     CONTINUE
182
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
183
                      END IF
184
                      JX = JX + INCX
185
                      KK = KK + J
186
   40             CONTINUE
187
              END IF
188
          ELSE
189
              KK = (N* (N+1))/2
190
              IF (INCX.EQ.1) THEN
191
                  DO 60 J = N,1,-1
192
                      IF (X(J).NE.ZERO) THEN
193
                          TEMP = X(J)
194
                          K = KK
195
                          DO 50 I = N,J + 1,-1
196
                              X(I) = X(I) + TEMP*AP(K)
197
                              K = K - 1
198
   50                     CONTINUE
199
                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
200
                      END IF
201
                      KK = KK - (N-J+1)
202
   60             CONTINUE
203
              ELSE
204
                  KX = KX + (N-1)*INCX
205
                  JX = KX
206
                  DO 80 J = N,1,-1
207
                      IF (X(JX).NE.ZERO) THEN
208
                          TEMP = X(JX)
209
                          IX = KX
210
                          DO 70 K = KK,KK - (N- (J+1)),-1
211
                              X(IX) = X(IX) + TEMP*AP(K)
212
                              IX = IX - INCX
213
   70                     CONTINUE
214
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
215
                      END IF
216
                      JX = JX - INCX
217
                      KK = KK - (N-J+1)
218
   80             CONTINUE
219
              END IF
220
          END IF
221
      ELSE
222
*
223
*        Form  x := A'*x.
224
*
225
          IF (LSAME(UPLO,'U')) THEN
226
              KK = (N* (N+1))/2
227
              IF (INCX.EQ.1) THEN
228
                  DO 100 J = N,1,-1
229
                      TEMP = X(J)
230
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
231
                      K = KK - 1
232
                      DO 90 I = J - 1,1,-1
233
                          TEMP = TEMP + AP(K)*X(I)
234
                          K = K - 1
235
   90                 CONTINUE
236
                      X(J) = TEMP
237
                      KK = KK - J
238
  100             CONTINUE
239
              ELSE
240
                  JX = KX + (N-1)*INCX
241
                  DO 120 J = N,1,-1
242
                      TEMP = X(JX)
243
                      IX = JX
244
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
245
                      DO 110 K = KK - 1,KK - J + 1,-1
246
                          IX = IX - INCX
247
                          TEMP = TEMP + AP(K)*X(IX)
248
  110                 CONTINUE
249
                      X(JX) = TEMP
250
                      JX = JX - INCX
251
                      KK = KK - J
252
  120             CONTINUE
253
              END IF
254
          ELSE
255
              KK = 1
256
              IF (INCX.EQ.1) THEN
257
                  DO 140 J = 1,N
258
                      TEMP = X(J)
259
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
260
                      K = KK + 1
261
                      DO 130 I = J + 1,N
262
                          TEMP = TEMP + AP(K)*X(I)
263
                          K = K + 1
264
  130                 CONTINUE
265
                      X(J) = TEMP
266
                      KK = KK + (N-J+1)
267
  140             CONTINUE
268
              ELSE
269
                  JX = KX
270
                  DO 160 J = 1,N
271
                      TEMP = X(JX)
272
                      IX = JX
273
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
274
                      DO 150 K = KK + 1,KK + N - J
275
                          IX = IX + INCX
276
                          TEMP = TEMP + AP(K)*X(IX)
277
  150                 CONTINUE
278
                      X(JX) = TEMP
279
                      JX = JX + INCX
280
                      KK = KK + (N-J+1)
281
  160             CONTINUE
282
              END IF
283
          END IF
284
      END IF
285
*
286
      RETURN
287
*
288
*     End of DTPMV .
289
*
290
      END