Statistiques
| Révision :

root / src / blas / dsbmv.f @ 4

Historique | Voir | Annoter | Télécharger (9,29 ko)

1
      SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA,BETA
4
      INTEGER INCX,INCY,K,LDA,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  DSBMV  performs the matrix-vector  operation
15
*
16
*     y := alpha*A*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are n element vectors and
19
*  A is an n by n symmetric band matrix, with k super-diagonals.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the band matrix A is being supplied as
27
*           follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  being supplied.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  being supplied.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  K      - INTEGER.
43
*           On entry, K specifies the number of super-diagonals of the
44
*           matrix A. K must satisfy  0 .le. K.
45
*           Unchanged on exit.
46
*
47
*  ALPHA  - DOUBLE PRECISION.
48
*           On entry, ALPHA specifies the scalar alpha.
49
*           Unchanged on exit.
50
*
51
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
52
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53
*           by n part of the array A must contain the upper triangular
54
*           band part of the symmetric matrix, supplied column by
55
*           column, with the leading diagonal of the matrix in row
56
*           ( k + 1 ) of the array, the first super-diagonal starting at
57
*           position 2 in row k, and so on. The top left k by k triangle
58
*           of the array A is not referenced.
59
*           The following program segment will transfer the upper
60
*           triangular part of a symmetric band matrix from conventional
61
*           full matrix storage to band storage:
62
*
63
*                 DO 20, J = 1, N
64
*                    M = K + 1 - J
65
*                    DO 10, I = MAX( 1, J - K ), J
66
*                       A( M + I, J ) = matrix( I, J )
67
*              10    CONTINUE
68
*              20 CONTINUE
69
*
70
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71
*           by n part of the array A must contain the lower triangular
72
*           band part of the symmetric matrix, supplied column by
73
*           column, with the leading diagonal of the matrix in row 1 of
74
*           the array, the first sub-diagonal starting at position 1 in
75
*           row 2, and so on. The bottom right k by k triangle of the
76
*           array A is not referenced.
77
*           The following program segment will transfer the lower
78
*           triangular part of a symmetric band matrix from conventional
79
*           full matrix storage to band storage:
80
*
81
*                 DO 20, J = 1, N
82
*                    M = 1 - J
83
*                    DO 10, I = J, MIN( N, J + K )
84
*                       A( M + I, J ) = matrix( I, J )
85
*              10    CONTINUE
86
*              20 CONTINUE
87
*
88
*           Unchanged on exit.
89
*
90
*  LDA    - INTEGER.
91
*           On entry, LDA specifies the first dimension of A as declared
92
*           in the calling (sub) program. LDA must be at least
93
*           ( k + 1 ).
94
*           Unchanged on exit.
95
*
96
*  X      - DOUBLE PRECISION array of DIMENSION at least
97
*           ( 1 + ( n - 1 )*abs( INCX ) ).
98
*           Before entry, the incremented array X must contain the
99
*           vector x.
100
*           Unchanged on exit.
101
*
102
*  INCX   - INTEGER.
103
*           On entry, INCX specifies the increment for the elements of
104
*           X. INCX must not be zero.
105
*           Unchanged on exit.
106
*
107
*  BETA   - DOUBLE PRECISION.
108
*           On entry, BETA specifies the scalar beta.
109
*           Unchanged on exit.
110
*
111
*  Y      - DOUBLE PRECISION array of DIMENSION at least
112
*           ( 1 + ( n - 1 )*abs( INCY ) ).
113
*           Before entry, the incremented array Y must contain the
114
*           vector y. On exit, Y is overwritten by the updated vector y.
115
*
116
*  INCY   - INTEGER.
117
*           On entry, INCY specifies the increment for the elements of
118
*           Y. INCY must not be zero.
119
*           Unchanged on exit.
120
*
121
*
122
*  Level 2 Blas routine.
123
*
124
*  -- Written on 22-October-1986.
125
*     Jack Dongarra, Argonne National Lab.
126
*     Jeremy Du Croz, Nag Central Office.
127
*     Sven Hammarling, Nag Central Office.
128
*     Richard Hanson, Sandia National Labs.
129
*
130
*
131
*     .. Parameters ..
132
      DOUBLE PRECISION ONE,ZERO
133
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
134
*     ..
135
*     .. Local Scalars ..
136
      DOUBLE PRECISION TEMP1,TEMP2
137
      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
138
*     ..
139
*     .. External Functions ..
140
      LOGICAL LSAME
141
      EXTERNAL LSAME
142
*     ..
143
*     .. External Subroutines ..
144
      EXTERNAL XERBLA
145
*     ..
146
*     .. Intrinsic Functions ..
147
      INTRINSIC MAX,MIN
148
*     ..
149
*
150
*     Test the input parameters.
151
*
152
      INFO = 0
153
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
154
          INFO = 1
155
      ELSE IF (N.LT.0) THEN
156
          INFO = 2
157
      ELSE IF (K.LT.0) THEN
158
          INFO = 3
159
      ELSE IF (LDA.LT. (K+1)) THEN
160
          INFO = 6
161
      ELSE IF (INCX.EQ.0) THEN
162
          INFO = 8
163
      ELSE IF (INCY.EQ.0) THEN
164
          INFO = 11
165
      END IF
166
      IF (INFO.NE.0) THEN
167
          CALL XERBLA('DSBMV ',INFO)
168
          RETURN
169
      END IF
170
*
171
*     Quick return if possible.
172
*
173
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
174
*
175
*     Set up the start points in  X  and  Y.
176
*
177
      IF (INCX.GT.0) THEN
178
          KX = 1
179
      ELSE
180
          KX = 1 - (N-1)*INCX
181
      END IF
182
      IF (INCY.GT.0) THEN
183
          KY = 1
184
      ELSE
185
          KY = 1 - (N-1)*INCY
186
      END IF
187
*
188
*     Start the operations. In this version the elements of the array A
189
*     are accessed sequentially with one pass through A.
190
*
191
*     First form  y := beta*y.
192
*
193
      IF (BETA.NE.ONE) THEN
194
          IF (INCY.EQ.1) THEN
195
              IF (BETA.EQ.ZERO) THEN
196
                  DO 10 I = 1,N
197
                      Y(I) = ZERO
198
   10             CONTINUE
199
              ELSE
200
                  DO 20 I = 1,N
201
                      Y(I) = BETA*Y(I)
202
   20             CONTINUE
203
              END IF
204
          ELSE
205
              IY = KY
206
              IF (BETA.EQ.ZERO) THEN
207
                  DO 30 I = 1,N
208
                      Y(IY) = ZERO
209
                      IY = IY + INCY
210
   30             CONTINUE
211
              ELSE
212
                  DO 40 I = 1,N
213
                      Y(IY) = BETA*Y(IY)
214
                      IY = IY + INCY
215
   40             CONTINUE
216
              END IF
217
          END IF
218
      END IF
219
      IF (ALPHA.EQ.ZERO) RETURN
220
      IF (LSAME(UPLO,'U')) THEN
221
*
222
*        Form  y  when upper triangle of A is stored.
223
*
224
          KPLUS1 = K + 1
225
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
226
              DO 60 J = 1,N
227
                  TEMP1 = ALPHA*X(J)
228
                  TEMP2 = ZERO
229
                  L = KPLUS1 - J
230
                  DO 50 I = MAX(1,J-K),J - 1
231
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
232
                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
233
   50             CONTINUE
234
                  Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
235
   60         CONTINUE
236
          ELSE
237
              JX = KX
238
              JY = KY
239
              DO 80 J = 1,N
240
                  TEMP1 = ALPHA*X(JX)
241
                  TEMP2 = ZERO
242
                  IX = KX
243
                  IY = KY
244
                  L = KPLUS1 - J
245
                  DO 70 I = MAX(1,J-K),J - 1
246
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
247
                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
248
                      IX = IX + INCX
249
                      IY = IY + INCY
250
   70             CONTINUE
251
                  Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
252
                  JX = JX + INCX
253
                  JY = JY + INCY
254
                  IF (J.GT.K) THEN
255
                      KX = KX + INCX
256
                      KY = KY + INCY
257
                  END IF
258
   80         CONTINUE
259
          END IF
260
      ELSE
261
*
262
*        Form  y  when lower triangle of A is stored.
263
*
264
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
265
              DO 100 J = 1,N
266
                  TEMP1 = ALPHA*X(J)
267
                  TEMP2 = ZERO
268
                  Y(J) = Y(J) + TEMP1*A(1,J)
269
                  L = 1 - J
270
                  DO 90 I = J + 1,MIN(N,J+K)
271
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
272
                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
273
   90             CONTINUE
274
                  Y(J) = Y(J) + ALPHA*TEMP2
275
  100         CONTINUE
276
          ELSE
277
              JX = KX
278
              JY = KY
279
              DO 120 J = 1,N
280
                  TEMP1 = ALPHA*X(JX)
281
                  TEMP2 = ZERO
282
                  Y(JY) = Y(JY) + TEMP1*A(1,J)
283
                  L = 1 - J
284
                  IX = JX
285
                  IY = JY
286
                  DO 110 I = J + 1,MIN(N,J+K)
287
                      IX = IX + INCX
288
                      IY = IY + INCY
289
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
290
                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
291
  110             CONTINUE
292
                  Y(JY) = Y(JY) + ALPHA*TEMP2
293
                  JX = JX + INCX
294
                  JY = JY + INCY
295
  120         CONTINUE
296
          END IF
297
      END IF
298
*
299
      RETURN
300
*
301
*     End of DSBMV .
302
*
303
      END