Statistiques
| Révision :

root / src / blas / dgbmv.f @ 4

Historique | Voir | Annoter | Télécharger (8,81 ko)

1
      SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA,BETA
4
      INTEGER INCX,INCY,KL,KU,LDA,M,N
5
      CHARACTER TRANS
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  DGBMV  performs one of the matrix-vector operations
15
*
16
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are vectors and A is an
19
*  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  TRANS  - CHARACTER*1.
25
*           On entry, TRANS specifies the operation to be performed as
26
*           follows:
27
*
28
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
29
*
30
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
31
*
32
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
33
*
34
*           Unchanged on exit.
35
*
36
*  M      - INTEGER.
37
*           On entry, M specifies the number of rows of the matrix A.
38
*           M must be at least zero.
39
*           Unchanged on exit.
40
*
41
*  N      - INTEGER.
42
*           On entry, N specifies the number of columns of the matrix A.
43
*           N must be at least zero.
44
*           Unchanged on exit.
45
*
46
*  KL     - INTEGER.
47
*           On entry, KL specifies the number of sub-diagonals of the
48
*           matrix A. KL must satisfy  0 .le. KL.
49
*           Unchanged on exit.
50
*
51
*  KU     - INTEGER.
52
*           On entry, KU specifies the number of super-diagonals of the
53
*           matrix A. KU must satisfy  0 .le. KU.
54
*           Unchanged on exit.
55
*
56
*  ALPHA  - DOUBLE PRECISION.
57
*           On entry, ALPHA specifies the scalar alpha.
58
*           Unchanged on exit.
59
*
60
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
61
*           Before entry, the leading ( kl + ku + 1 ) by n part of the
62
*           array A must contain the matrix of coefficients, supplied
63
*           column by column, with the leading diagonal of the matrix in
64
*           row ( ku + 1 ) of the array, the first super-diagonal
65
*           starting at position 2 in row ku, the first sub-diagonal
66
*           starting at position 1 in row ( ku + 2 ), and so on.
67
*           Elements in the array A that do not correspond to elements
68
*           in the band matrix (such as the top left ku by ku triangle)
69
*           are not referenced.
70
*           The following program segment will transfer a band matrix
71
*           from conventional full matrix storage to band storage:
72
*
73
*                 DO 20, J = 1, N
74
*                    K = KU + 1 - J
75
*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
76
*                       A( K + I, J ) = matrix( I, J )
77
*              10    CONTINUE
78
*              20 CONTINUE
79
*
80
*           Unchanged on exit.
81
*
82
*  LDA    - INTEGER.
83
*           On entry, LDA specifies the first dimension of A as declared
84
*           in the calling (sub) program. LDA must be at least
85
*           ( kl + ku + 1 ).
86
*           Unchanged on exit.
87
*
88
*  X      - DOUBLE PRECISION array of DIMENSION at least
89
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
90
*           and at least
91
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
92
*           Before entry, the incremented array X must contain the
93
*           vector x.
94
*           Unchanged on exit.
95
*
96
*  INCX   - INTEGER.
97
*           On entry, INCX specifies the increment for the elements of
98
*           X. INCX must not be zero.
99
*           Unchanged on exit.
100
*
101
*  BETA   - DOUBLE PRECISION.
102
*           On entry, BETA specifies the scalar beta. When BETA is
103
*           supplied as zero then Y need not be set on input.
104
*           Unchanged on exit.
105
*
106
*  Y      - DOUBLE PRECISION array of DIMENSION at least
107
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
108
*           and at least
109
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
110
*           Before entry, the incremented array Y must contain the
111
*           vector y. On exit, Y is overwritten by the updated vector y.
112
*
113
*  INCY   - INTEGER.
114
*           On entry, INCY specifies the increment for the elements of
115
*           Y. INCY must not be zero.
116
*           Unchanged on exit.
117
*
118
*
119
*  Level 2 Blas routine.
120
*
121
*  -- Written on 22-October-1986.
122
*     Jack Dongarra, Argonne National Lab.
123
*     Jeremy Du Croz, Nag Central Office.
124
*     Sven Hammarling, Nag Central Office.
125
*     Richard Hanson, Sandia National Labs.
126
*
127
*     .. Parameters ..
128
      DOUBLE PRECISION ONE,ZERO
129
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
130
*     ..
131
*     .. Local Scalars ..
132
      DOUBLE PRECISION TEMP
133
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
134
*     ..
135
*     .. External Functions ..
136
      LOGICAL LSAME
137
      EXTERNAL LSAME
138
*     ..
139
*     .. External Subroutines ..
140
      EXTERNAL XERBLA
141
*     ..
142
*     .. Intrinsic Functions ..
143
      INTRINSIC MAX,MIN
144
*     ..
145
*
146
*     Test the input parameters.
147
*
148
      INFO = 0
149
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
150
     +    .NOT.LSAME(TRANS,'C')) THEN
151
          INFO = 1
152
      ELSE IF (M.LT.0) THEN
153
          INFO = 2
154
      ELSE IF (N.LT.0) THEN
155
          INFO = 3
156
      ELSE IF (KL.LT.0) THEN
157
          INFO = 4
158
      ELSE IF (KU.LT.0) THEN
159
          INFO = 5
160
      ELSE IF (LDA.LT. (KL+KU+1)) THEN
161
          INFO = 8
162
      ELSE IF (INCX.EQ.0) THEN
163
          INFO = 10
164
      ELSE IF (INCY.EQ.0) THEN
165
          INFO = 13
166
      END IF
167
      IF (INFO.NE.0) THEN
168
          CALL XERBLA('DGBMV ',INFO)
169
          RETURN
170
      END IF
171
*
172
*     Quick return if possible.
173
*
174
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
175
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
176
*
177
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
178
*     up the start points in  X  and  Y.
179
*
180
      IF (LSAME(TRANS,'N')) THEN
181
          LENX = N
182
          LENY = M
183
      ELSE
184
          LENX = M
185
          LENY = N
186
      END IF
187
      IF (INCX.GT.0) THEN
188
          KX = 1
189
      ELSE
190
          KX = 1 - (LENX-1)*INCX
191
      END IF
192
      IF (INCY.GT.0) THEN
193
          KY = 1
194
      ELSE
195
          KY = 1 - (LENY-1)*INCY
196
      END IF
197
*
198
*     Start the operations. In this version the elements of A are
199
*     accessed sequentially with one pass through the band part of A.
200
*
201
*     First form  y := beta*y.
202
*
203
      IF (BETA.NE.ONE) THEN
204
          IF (INCY.EQ.1) THEN
205
              IF (BETA.EQ.ZERO) THEN
206
                  DO 10 I = 1,LENY
207
                      Y(I) = ZERO
208
   10             CONTINUE
209
              ELSE
210
                  DO 20 I = 1,LENY
211
                      Y(I) = BETA*Y(I)
212
   20             CONTINUE
213
              END IF
214
          ELSE
215
              IY = KY
216
              IF (BETA.EQ.ZERO) THEN
217
                  DO 30 I = 1,LENY
218
                      Y(IY) = ZERO
219
                      IY = IY + INCY
220
   30             CONTINUE
221
              ELSE
222
                  DO 40 I = 1,LENY
223
                      Y(IY) = BETA*Y(IY)
224
                      IY = IY + INCY
225
   40             CONTINUE
226
              END IF
227
          END IF
228
      END IF
229
      IF (ALPHA.EQ.ZERO) RETURN
230
      KUP1 = KU + 1
231
      IF (LSAME(TRANS,'N')) THEN
232
*
233
*        Form  y := alpha*A*x + y.
234
*
235
          JX = KX
236
          IF (INCY.EQ.1) THEN
237
              DO 60 J = 1,N
238
                  IF (X(JX).NE.ZERO) THEN
239
                      TEMP = ALPHA*X(JX)
240
                      K = KUP1 - J
241
                      DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
242
                          Y(I) = Y(I) + TEMP*A(K+I,J)
243
   50                 CONTINUE
244
                  END IF
245
                  JX = JX + INCX
246
   60         CONTINUE
247
          ELSE
248
              DO 80 J = 1,N
249
                  IF (X(JX).NE.ZERO) THEN
250
                      TEMP = ALPHA*X(JX)
251
                      IY = KY
252
                      K = KUP1 - J
253
                      DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
254
                          Y(IY) = Y(IY) + TEMP*A(K+I,J)
255
                          IY = IY + INCY
256
   70                 CONTINUE
257
                  END IF
258
                  JX = JX + INCX
259
                  IF (J.GT.KU) KY = KY + INCY
260
   80         CONTINUE
261
          END IF
262
      ELSE
263
*
264
*        Form  y := alpha*A'*x + y.
265
*
266
          JY = KY
267
          IF (INCX.EQ.1) THEN
268
              DO 100 J = 1,N
269
                  TEMP = ZERO
270
                  K = KUP1 - J
271
                  DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
272
                      TEMP = TEMP + A(K+I,J)*X(I)
273
   90             CONTINUE
274
                  Y(JY) = Y(JY) + ALPHA*TEMP
275
                  JY = JY + INCY
276
  100         CONTINUE
277
          ELSE
278
              DO 120 J = 1,N
279
                  TEMP = ZERO
280
                  IX = KX
281
                  K = KUP1 - J
282
                  DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
283
                      TEMP = TEMP + A(K+I,J)*X(IX)
284
                      IX = IX + INCX
285
  110             CONTINUE
286
                  Y(JY) = Y(JY) + ALPHA*TEMP
287
                  JY = JY + INCY
288
                  IF (J.GT.KU) KX = KX + INCX
289
  120         CONTINUE
290
          END IF
291
      END IF
292
*
293
      RETURN
294
*
295
*     End of DGBMV .
296
*
297
      END