root / src / blas / ssyr.f @ 4
Historique | Voir | Annoter | Télécharger (5,68 ko)
1 | 1 | pfleura2 | SUBROUTINE SSYR(UPLO,N,ALPHA,X,INCX,A,LDA) |
---|---|---|---|
2 | 1 | pfleura2 | * .. Scalar Arguments .. |
3 | 1 | pfleura2 | REAL ALPHA |
4 | 1 | pfleura2 | INTEGER INCX,LDA,N |
5 | 1 | pfleura2 | CHARACTER UPLO |
6 | 1 | pfleura2 | * .. |
7 | 1 | pfleura2 | * .. Array Arguments .. |
8 | 1 | pfleura2 | REAL A(LDA,*),X(*) |
9 | 1 | pfleura2 | * .. |
10 | 1 | pfleura2 | * |
11 | 1 | pfleura2 | * Purpose |
12 | 1 | pfleura2 | * ======= |
13 | 1 | pfleura2 | * |
14 | 1 | pfleura2 | * SSYR performs the symmetric rank 1 operation |
15 | 1 | pfleura2 | * |
16 | 1 | pfleura2 | * A := alpha*x*x' + A, |
17 | 1 | pfleura2 | * |
18 | 1 | pfleura2 | * where alpha is a real scalar, x is an n element vector and A is an |
19 | 1 | pfleura2 | * n by n symmetric matrix. |
20 | 1 | pfleura2 | * |
21 | 1 | pfleura2 | * Arguments |
22 | 1 | pfleura2 | * ========== |
23 | 1 | pfleura2 | * |
24 | 1 | pfleura2 | * UPLO - CHARACTER*1. |
25 | 1 | pfleura2 | * On entry, UPLO specifies whether the upper or lower |
26 | 1 | pfleura2 | * triangular part of the array A is to be referenced as |
27 | 1 | pfleura2 | * follows: |
28 | 1 | pfleura2 | * |
29 | 1 | pfleura2 | * UPLO = 'U' or 'u' Only the upper triangular part of A |
30 | 1 | pfleura2 | * is to be referenced. |
31 | 1 | pfleura2 | * |
32 | 1 | pfleura2 | * UPLO = 'L' or 'l' Only the lower triangular part of A |
33 | 1 | pfleura2 | * is to be referenced. |
34 | 1 | pfleura2 | * |
35 | 1 | pfleura2 | * Unchanged on exit. |
36 | 1 | pfleura2 | * |
37 | 1 | pfleura2 | * N - INTEGER. |
38 | 1 | pfleura2 | * On entry, N specifies the order of the matrix A. |
39 | 1 | pfleura2 | * N must be at least zero. |
40 | 1 | pfleura2 | * Unchanged on exit. |
41 | 1 | pfleura2 | * |
42 | 1 | pfleura2 | * ALPHA - REAL . |
43 | 1 | pfleura2 | * On entry, ALPHA specifies the scalar alpha. |
44 | 1 | pfleura2 | * Unchanged on exit. |
45 | 1 | pfleura2 | * |
46 | 1 | pfleura2 | * X - REAL array of dimension at least |
47 | 1 | pfleura2 | * ( 1 + ( n - 1 )*abs( INCX ) ). |
48 | 1 | pfleura2 | * Before entry, the incremented array X must contain the n |
49 | 1 | pfleura2 | * element vector x. |
50 | 1 | pfleura2 | * Unchanged on exit. |
51 | 1 | pfleura2 | * |
52 | 1 | pfleura2 | * INCX - INTEGER. |
53 | 1 | pfleura2 | * On entry, INCX specifies the increment for the elements of |
54 | 1 | pfleura2 | * X. INCX must not be zero. |
55 | 1 | pfleura2 | * Unchanged on exit. |
56 | 1 | pfleura2 | * |
57 | 1 | pfleura2 | * A - REAL array of DIMENSION ( LDA, n ). |
58 | 1 | pfleura2 | * Before entry with UPLO = 'U' or 'u', the leading n by n |
59 | 1 | pfleura2 | * upper triangular part of the array A must contain the upper |
60 | 1 | pfleura2 | * triangular part of the symmetric matrix and the strictly |
61 | 1 | pfleura2 | * lower triangular part of A is not referenced. On exit, the |
62 | 1 | pfleura2 | * upper triangular part of the array A is overwritten by the |
63 | 1 | pfleura2 | * upper triangular part of the updated matrix. |
64 | 1 | pfleura2 | * Before entry with UPLO = 'L' or 'l', the leading n by n |
65 | 1 | pfleura2 | * lower triangular part of the array A must contain the lower |
66 | 1 | pfleura2 | * triangular part of the symmetric matrix and the strictly |
67 | 1 | pfleura2 | * upper triangular part of A is not referenced. On exit, the |
68 | 1 | pfleura2 | * lower triangular part of the array A is overwritten by the |
69 | 1 | pfleura2 | * lower triangular part of the updated matrix. |
70 | 1 | pfleura2 | * |
71 | 1 | pfleura2 | * LDA - INTEGER. |
72 | 1 | pfleura2 | * On entry, LDA specifies the first dimension of A as declared |
73 | 1 | pfleura2 | * in the calling (sub) program. LDA must be at least |
74 | 1 | pfleura2 | * max( 1, n ). |
75 | 1 | pfleura2 | * Unchanged on exit. |
76 | 1 | pfleura2 | * |
77 | 1 | pfleura2 | * |
78 | 1 | pfleura2 | * Level 2 Blas routine. |
79 | 1 | pfleura2 | * |
80 | 1 | pfleura2 | * -- Written on 22-October-1986. |
81 | 1 | pfleura2 | * Jack Dongarra, Argonne National Lab. |
82 | 1 | pfleura2 | * Jeremy Du Croz, Nag Central Office. |
83 | 1 | pfleura2 | * Sven Hammarling, Nag Central Office. |
84 | 1 | pfleura2 | * Richard Hanson, Sandia National Labs. |
85 | 1 | pfleura2 | * |
86 | 1 | pfleura2 | * |
87 | 1 | pfleura2 | * .. Parameters .. |
88 | 1 | pfleura2 | REAL ZERO |
89 | 1 | pfleura2 | PARAMETER (ZERO=0.0E+0) |
90 | 1 | pfleura2 | * .. |
91 | 1 | pfleura2 | * .. Local Scalars .. |
92 | 1 | pfleura2 | REAL TEMP |
93 | 1 | pfleura2 | INTEGER I,INFO,IX,J,JX,KX |
94 | 1 | pfleura2 | * .. |
95 | 1 | pfleura2 | * .. External Functions .. |
96 | 1 | pfleura2 | LOGICAL LSAME |
97 | 1 | pfleura2 | EXTERNAL LSAME |
98 | 1 | pfleura2 | * .. |
99 | 1 | pfleura2 | * .. External Subroutines .. |
100 | 1 | pfleura2 | EXTERNAL XERBLA |
101 | 1 | pfleura2 | * .. |
102 | 1 | pfleura2 | * .. Intrinsic Functions .. |
103 | 1 | pfleura2 | INTRINSIC MAX |
104 | 1 | pfleura2 | * .. |
105 | 1 | pfleura2 | * |
106 | 1 | pfleura2 | * Test the input parameters. |
107 | 1 | pfleura2 | * |
108 | 1 | pfleura2 | INFO = 0 |
109 | 1 | pfleura2 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
110 | 1 | pfleura2 | INFO = 1 |
111 | 1 | pfleura2 | ELSE IF (N.LT.0) THEN |
112 | 1 | pfleura2 | INFO = 2 |
113 | 1 | pfleura2 | ELSE IF (INCX.EQ.0) THEN |
114 | 1 | pfleura2 | INFO = 5 |
115 | 1 | pfleura2 | ELSE IF (LDA.LT.MAX(1,N)) THEN |
116 | 1 | pfleura2 | INFO = 7 |
117 | 1 | pfleura2 | END IF |
118 | 1 | pfleura2 | IF (INFO.NE.0) THEN |
119 | 1 | pfleura2 | CALL XERBLA('SSYR ',INFO) |
120 | 1 | pfleura2 | RETURN |
121 | 1 | pfleura2 | END IF |
122 | 1 | pfleura2 | * |
123 | 1 | pfleura2 | * Quick return if possible. |
124 | 1 | pfleura2 | * |
125 | 1 | pfleura2 | IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
126 | 1 | pfleura2 | * |
127 | 1 | pfleura2 | * Set the start point in X if the increment is not unity. |
128 | 1 | pfleura2 | * |
129 | 1 | pfleura2 | IF (INCX.LE.0) THEN |
130 | 1 | pfleura2 | KX = 1 - (N-1)*INCX |
131 | 1 | pfleura2 | ELSE IF (INCX.NE.1) THEN |
132 | 1 | pfleura2 | KX = 1 |
133 | 1 | pfleura2 | END IF |
134 | 1 | pfleura2 | * |
135 | 1 | pfleura2 | * Start the operations. In this version the elements of A are |
136 | 1 | pfleura2 | * accessed sequentially with one pass through the triangular part |
137 | 1 | pfleura2 | * of A. |
138 | 1 | pfleura2 | * |
139 | 1 | pfleura2 | IF (LSAME(UPLO,'U')) THEN |
140 | 1 | pfleura2 | * |
141 | 1 | pfleura2 | * Form A when A is stored in upper triangle. |
142 | 1 | pfleura2 | * |
143 | 1 | pfleura2 | IF (INCX.EQ.1) THEN |
144 | 1 | pfleura2 | DO 20 J = 1,N |
145 | 1 | pfleura2 | IF (X(J).NE.ZERO) THEN |
146 | 1 | pfleura2 | TEMP = ALPHA*X(J) |
147 | 1 | pfleura2 | DO 10 I = 1,J |
148 | 1 | pfleura2 | A(I,J) = A(I,J) + X(I)*TEMP |
149 | 1 | pfleura2 | 10 CONTINUE |
150 | 1 | pfleura2 | END IF |
151 | 1 | pfleura2 | 20 CONTINUE |
152 | 1 | pfleura2 | ELSE |
153 | 1 | pfleura2 | JX = KX |
154 | 1 | pfleura2 | DO 40 J = 1,N |
155 | 1 | pfleura2 | IF (X(JX).NE.ZERO) THEN |
156 | 1 | pfleura2 | TEMP = ALPHA*X(JX) |
157 | 1 | pfleura2 | IX = KX |
158 | 1 | pfleura2 | DO 30 I = 1,J |
159 | 1 | pfleura2 | A(I,J) = A(I,J) + X(IX)*TEMP |
160 | 1 | pfleura2 | IX = IX + INCX |
161 | 1 | pfleura2 | 30 CONTINUE |
162 | 1 | pfleura2 | END IF |
163 | 1 | pfleura2 | JX = JX + INCX |
164 | 1 | pfleura2 | 40 CONTINUE |
165 | 1 | pfleura2 | END IF |
166 | 1 | pfleura2 | ELSE |
167 | 1 | pfleura2 | * |
168 | 1 | pfleura2 | * Form A when A is stored in lower triangle. |
169 | 1 | pfleura2 | * |
170 | 1 | pfleura2 | IF (INCX.EQ.1) THEN |
171 | 1 | pfleura2 | DO 60 J = 1,N |
172 | 1 | pfleura2 | IF (X(J).NE.ZERO) THEN |
173 | 1 | pfleura2 | TEMP = ALPHA*X(J) |
174 | 1 | pfleura2 | DO 50 I = J,N |
175 | 1 | pfleura2 | A(I,J) = A(I,J) + X(I)*TEMP |
176 | 1 | pfleura2 | 50 CONTINUE |
177 | 1 | pfleura2 | END IF |
178 | 1 | pfleura2 | 60 CONTINUE |
179 | 1 | pfleura2 | ELSE |
180 | 1 | pfleura2 | JX = KX |
181 | 1 | pfleura2 | DO 80 J = 1,N |
182 | 1 | pfleura2 | IF (X(JX).NE.ZERO) THEN |
183 | 1 | pfleura2 | TEMP = ALPHA*X(JX) |
184 | 1 | pfleura2 | IX = JX |
185 | 1 | pfleura2 | DO 70 I = J,N |
186 | 1 | pfleura2 | A(I,J) = A(I,J) + X(IX)*TEMP |
187 | 1 | pfleura2 | IX = IX + INCX |
188 | 1 | pfleura2 | 70 CONTINUE |
189 | 1 | pfleura2 | END IF |
190 | 1 | pfleura2 | JX = JX + INCX |
191 | 1 | pfleura2 | 80 CONTINUE |
192 | 1 | pfleura2 | END IF |
193 | 1 | pfleura2 | END IF |
194 | 1 | pfleura2 | * |
195 | 1 | pfleura2 | RETURN |
196 | 1 | pfleura2 | * |
197 | 1 | pfleura2 | * End of SSYR . |
198 | 1 | pfleura2 | * |
199 | 1 | pfleura2 | END |