Statistiques
| Révision :

root / src / lapack / double / dormqr.f @ 11

Historique | Voir | Annoter | Télécharger (7,41 ko)

1
      SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
2
     $                   WORK, LWORK, INFO )
3
*
4
*  -- LAPACK routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          SIDE, TRANS
11
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DORMQR overwrites the general real M-by-N matrix C with
21
*
22
*                  SIDE = 'L'     SIDE = 'R'
23
*  TRANS = 'N':      Q * C          C * Q
24
*  TRANS = 'T':      Q**T * C       C * Q**T
25
*
26
*  where Q is a real orthogonal matrix defined as the product of k
27
*  elementary reflectors
28
*
29
*        Q = H(1) H(2) . . . H(k)
30
*
31
*  as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
32
*  if SIDE = 'R'.
33
*
34
*  Arguments
35
*  =========
36
*
37
*  SIDE    (input) CHARACTER*1
38
*          = 'L': apply Q or Q**T from the Left;
39
*          = 'R': apply Q or Q**T from the Right.
40
*
41
*  TRANS   (input) CHARACTER*1
42
*          = 'N':  No transpose, apply Q;
43
*          = 'T':  Transpose, apply Q**T.
44
*
45
*  M       (input) INTEGER
46
*          The number of rows of the matrix C. M >= 0.
47
*
48
*  N       (input) INTEGER
49
*          The number of columns of the matrix C. N >= 0.
50
*
51
*  K       (input) INTEGER
52
*          The number of elementary reflectors whose product defines
53
*          the matrix Q.
54
*          If SIDE = 'L', M >= K >= 0;
55
*          if SIDE = 'R', N >= K >= 0.
56
*
57
*  A       (input) DOUBLE PRECISION array, dimension (LDA,K)
58
*          The i-th column must contain the vector which defines the
59
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
60
*          DGEQRF in the first k columns of its array argument A.
61
*          A is modified by the routine but restored on exit.
62
*
63
*  LDA     (input) INTEGER
64
*          The leading dimension of the array A.
65
*          If SIDE = 'L', LDA >= max(1,M);
66
*          if SIDE = 'R', LDA >= max(1,N).
67
*
68
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
69
*          TAU(i) must contain the scalar factor of the elementary
70
*          reflector H(i), as returned by DGEQRF.
71
*
72
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
73
*          On entry, the M-by-N matrix C.
74
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
75
*
76
*  LDC     (input) INTEGER
77
*          The leading dimension of the array C. LDC >= max(1,M).
78
*
79
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
80
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
81
*
82
*  LWORK   (input) INTEGER
83
*          The dimension of the array WORK.
84
*          If SIDE = 'L', LWORK >= max(1,N);
85
*          if SIDE = 'R', LWORK >= max(1,M).
86
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
87
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
88
*          blocksize.
89
*
90
*          If LWORK = -1, then a workspace query is assumed; the routine
91
*          only calculates the optimal size of the WORK array, returns
92
*          this value as the first entry of the WORK array, and no error
93
*          message related to LWORK is issued by XERBLA.
94
*
95
*  INFO    (output) INTEGER
96
*          = 0:  successful exit
97
*          < 0:  if INFO = -i, the i-th argument had an illegal value
98
*
99
*  =====================================================================
100
*
101
*     .. Parameters ..
102
      INTEGER            NBMAX, LDT
103
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
104
*     ..
105
*     .. Local Scalars ..
106
      LOGICAL            LEFT, LQUERY, NOTRAN
107
      INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
108
     $                   LWKOPT, MI, NB, NBMIN, NI, NQ, NW
109
*     ..
110
*     .. Local Arrays ..
111
      DOUBLE PRECISION   T( LDT, NBMAX )
112
*     ..
113
*     .. External Functions ..
114
      LOGICAL            LSAME
115
      INTEGER            ILAENV
116
      EXTERNAL           LSAME, ILAENV
117
*     ..
118
*     .. External Subroutines ..
119
      EXTERNAL           DLARFB, DLARFT, DORM2R, XERBLA
120
*     ..
121
*     .. Intrinsic Functions ..
122
      INTRINSIC          MAX, MIN
123
*     ..
124
*     .. Executable Statements ..
125
*
126
*     Test the input arguments
127
*
128
      INFO = 0
129
      LEFT = LSAME( SIDE, 'L' )
130
      NOTRAN = LSAME( TRANS, 'N' )
131
      LQUERY = ( LWORK.EQ.-1 )
132
*
133
*     NQ is the order of Q and NW is the minimum dimension of WORK
134
*
135
      IF( LEFT ) THEN
136
         NQ = M
137
         NW = N
138
      ELSE
139
         NQ = N
140
         NW = M
141
      END IF
142
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
143
         INFO = -1
144
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
145
         INFO = -2
146
      ELSE IF( M.LT.0 ) THEN
147
         INFO = -3
148
      ELSE IF( N.LT.0 ) THEN
149
         INFO = -4
150
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
151
         INFO = -5
152
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
153
         INFO = -7
154
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
155
         INFO = -10
156
      ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
157
         INFO = -12
158
      END IF
159
*
160
      IF( INFO.EQ.0 ) THEN
161
*
162
*        Determine the block size.  NB may be at most NBMAX, where NBMAX
163
*        is used to define the local array T.
164
*
165
         NB = MIN( NBMAX, ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N, K,
166
     $        -1 ) )
167
         LWKOPT = MAX( 1, NW )*NB
168
         WORK( 1 ) = LWKOPT
169
      END IF
170
*
171
      IF( INFO.NE.0 ) THEN
172
         CALL XERBLA( 'DORMQR', -INFO )
173
         RETURN
174
      ELSE IF( LQUERY ) THEN
175
         RETURN
176
      END IF
177
*
178
*     Quick return if possible
179
*
180
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
181
         WORK( 1 ) = 1
182
         RETURN
183
      END IF
184
*
185
      NBMIN = 2
186
      LDWORK = NW
187
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
188
         IWS = NW*NB
189
         IF( LWORK.LT.IWS ) THEN
190
            NB = LWORK / LDWORK
191
            NBMIN = MAX( 2, ILAENV( 2, 'DORMQR', SIDE // TRANS, M, N, K,
192
     $              -1 ) )
193
         END IF
194
      ELSE
195
         IWS = NW
196
      END IF
197
*
198
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
199
*
200
*        Use unblocked code
201
*
202
         CALL DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
203
     $                IINFO )
204
      ELSE
205
*
206
*        Use blocked code
207
*
208
         IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
209
     $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
210
            I1 = 1
211
            I2 = K
212
            I3 = NB
213
         ELSE
214
            I1 = ( ( K-1 ) / NB )*NB + 1
215
            I2 = 1
216
            I3 = -NB
217
         END IF
218
*
219
         IF( LEFT ) THEN
220
            NI = N
221
            JC = 1
222
         ELSE
223
            MI = M
224
            IC = 1
225
         END IF
226
*
227
         DO 10 I = I1, I2, I3
228
            IB = MIN( NB, K-I+1 )
229
*
230
*           Form the triangular factor of the block reflector
231
*           H = H(i) H(i+1) . . . H(i+ib-1)
232
*
233
            CALL DLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ),
234
     $                   LDA, TAU( I ), T, LDT )
235
            IF( LEFT ) THEN
236
*
237
*              H or H' is applied to C(i:m,1:n)
238
*
239
               MI = M - I + 1
240
               IC = I
241
            ELSE
242
*
243
*              H or H' is applied to C(1:m,i:n)
244
*
245
               NI = N - I + 1
246
               JC = I
247
            END IF
248
*
249
*           Apply H or H'
250
*
251
            CALL DLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI,
252
     $                   IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC,
253
     $                   WORK, LDWORK )
254
   10    CONTINUE
255
      END IF
256
      WORK( 1 ) = LWKOPT
257
      RETURN
258
*
259
*     End of DORMQR
260
*
261
      END