Statistiques
| Révision :

root / src / lapack / double / dbdsqr.f @ 11

Historique | Voir | Annoter | Télécharger (23,46 ko)

1
      SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
2
     $                   LDU, C, LDC, WORK, INFO )
3
*
4
*  -- LAPACK routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     January 2007
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          UPLO
11
      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
15
     $                   VT( LDVT, * ), WORK( * )
16
*     ..
17
*
18
*  Purpose
19
*  =======
20
*
21
*  DBDSQR computes the singular values and, optionally, the right and/or
22
*  left singular vectors from the singular value decomposition (SVD) of
23
*  a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
24
*  zero-shift QR algorithm.  The SVD of B has the form
25
* 
26
*     B = Q * S * P**T
27
* 
28
*  where S is the diagonal matrix of singular values, Q is an orthogonal
29
*  matrix of left singular vectors, and P is an orthogonal matrix of
30
*  right singular vectors.  If left singular vectors are requested, this
31
*  subroutine actually returns U*Q instead of Q, and, if right singular
32
*  vectors are requested, this subroutine returns P**T*VT instead of
33
*  P**T, for given real input matrices U and VT.  When U and VT are the
34
*  orthogonal matrices that reduce a general matrix A to bidiagonal
35
*  form:  A = U*B*VT, as computed by DGEBRD, then
36
*
37
*     A = (U*Q) * S * (P**T*VT)
38
*
39
*  is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
40
*  for a given real input matrix C.
41
*
42
*  See "Computing  Small Singular Values of Bidiagonal Matrices With
43
*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
44
*  LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
45
*  no. 5, pp. 873-912, Sept 1990) and
46
*  "Accurate singular values and differential qd algorithms," by
47
*  B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
48
*  Department, University of California at Berkeley, July 1992
49
*  for a detailed description of the algorithm.
50
*
51
*  Arguments
52
*  =========
53
*
54
*  UPLO    (input) CHARACTER*1
55
*          = 'U':  B is upper bidiagonal;
56
*          = 'L':  B is lower bidiagonal.
57
*
58
*  N       (input) INTEGER
59
*          The order of the matrix B.  N >= 0.
60
*
61
*  NCVT    (input) INTEGER
62
*          The number of columns of the matrix VT. NCVT >= 0.
63
*
64
*  NRU     (input) INTEGER
65
*          The number of rows of the matrix U. NRU >= 0.
66
*
67
*  NCC     (input) INTEGER
68
*          The number of columns of the matrix C. NCC >= 0.
69
*
70
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
71
*          On entry, the n diagonal elements of the bidiagonal matrix B.
72
*          On exit, if INFO=0, the singular values of B in decreasing
73
*          order.
74
*
75
*  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
76
*          On entry, the N-1 offdiagonal elements of the bidiagonal
77
*          matrix B. 
78
*          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
79
*          will contain the diagonal and superdiagonal elements of a
80
*          bidiagonal matrix orthogonally equivalent to the one given
81
*          as input.
82
*
83
*  VT      (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
84
*          On entry, an N-by-NCVT matrix VT.
85
*          On exit, VT is overwritten by P**T * VT.
86
*          Not referenced if NCVT = 0.
87
*
88
*  LDVT    (input) INTEGER
89
*          The leading dimension of the array VT.
90
*          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
91
*
92
*  U       (input/output) DOUBLE PRECISION array, dimension (LDU, N)
93
*          On entry, an NRU-by-N matrix U.
94
*          On exit, U is overwritten by U * Q.
95
*          Not referenced if NRU = 0.
96
*
97
*  LDU     (input) INTEGER
98
*          The leading dimension of the array U.  LDU >= max(1,NRU).
99
*
100
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
101
*          On entry, an N-by-NCC matrix C.
102
*          On exit, C is overwritten by Q**T * C.
103
*          Not referenced if NCC = 0.
104
*
105
*  LDC     (input) INTEGER
106
*          The leading dimension of the array C.
107
*          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
108
*
109
*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
110
*
111
*  INFO    (output) INTEGER
112
*          = 0:  successful exit
113
*          < 0:  If INFO = -i, the i-th argument had an illegal value
114
*          > 0:
115
*             if NCVT = NRU = NCC = 0,
116
*                = 1, a split was marked by a positive value in E
117
*                = 2, current block of Z not diagonalized after 30*N
118
*                     iterations (in inner while loop)
119
*                = 3, termination criterion of outer while loop not met 
120
*                     (program created more than N unreduced blocks)
121
*             else NCVT = NRU = NCC = 0,
122
*                   the algorithm did not converge; D and E contain the
123
*                   elements of a bidiagonal matrix which is orthogonally
124
*                   similar to the input matrix B;  if INFO = i, i
125
*                   elements of E have not converged to zero.
126
*
127
*  Internal Parameters
128
*  ===================
129
*
130
*  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
131
*          TOLMUL controls the convergence criterion of the QR loop.
132
*          If it is positive, TOLMUL*EPS is the desired relative
133
*             precision in the computed singular values.
134
*          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
135
*             desired absolute accuracy in the computed singular
136
*             values (corresponds to relative accuracy
137
*             abs(TOLMUL*EPS) in the largest singular value.
138
*          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
139
*             between 10 (for fast convergence) and .1/EPS
140
*             (for there to be some accuracy in the results).
141
*          Default is to lose at either one eighth or 2 of the
142
*             available decimal digits in each computed singular value
143
*             (whichever is smaller).
144
*
145
*  MAXITR  INTEGER, default = 6
146
*          MAXITR controls the maximum number of passes of the
147
*          algorithm through its inner loop. The algorithms stops
148
*          (and so fails to converge) if the number of passes
149
*          through the inner loop exceeds MAXITR*N**2.
150
*
151
*  =====================================================================
152
*
153
*     .. Parameters ..
154
      DOUBLE PRECISION   ZERO
155
      PARAMETER          ( ZERO = 0.0D0 )
156
      DOUBLE PRECISION   ONE
157
      PARAMETER          ( ONE = 1.0D0 )
158
      DOUBLE PRECISION   NEGONE
159
      PARAMETER          ( NEGONE = -1.0D0 )
160
      DOUBLE PRECISION   HNDRTH
161
      PARAMETER          ( HNDRTH = 0.01D0 )
162
      DOUBLE PRECISION   TEN
163
      PARAMETER          ( TEN = 10.0D0 )
164
      DOUBLE PRECISION   HNDRD
165
      PARAMETER          ( HNDRD = 100.0D0 )
166
      DOUBLE PRECISION   MEIGTH
167
      PARAMETER          ( MEIGTH = -0.125D0 )
168
      INTEGER            MAXITR
169
      PARAMETER          ( MAXITR = 6 )
170
*     ..
171
*     .. Local Scalars ..
172
      LOGICAL            LOWER, ROTATE
173
      INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
174
     $                   NM12, NM13, OLDLL, OLDM
175
      DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
176
     $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
177
     $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
178
     $                   SN, THRESH, TOL, TOLMUL, UNFL
179
*     ..
180
*     .. External Functions ..
181
      LOGICAL            LSAME
182
      DOUBLE PRECISION   DLAMCH
183
      EXTERNAL           LSAME, DLAMCH
184
*     ..
185
*     .. External Subroutines ..
186
      EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT,
187
     $                   DSCAL, DSWAP, XERBLA
188
*     ..
189
*     .. Intrinsic Functions ..
190
      INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
191
*     ..
192
*     .. Executable Statements ..
193
*
194
*     Test the input parameters.
195
*
196
      INFO = 0
197
      LOWER = LSAME( UPLO, 'L' )
198
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
199
         INFO = -1
200
      ELSE IF( N.LT.0 ) THEN
201
         INFO = -2
202
      ELSE IF( NCVT.LT.0 ) THEN
203
         INFO = -3
204
      ELSE IF( NRU.LT.0 ) THEN
205
         INFO = -4
206
      ELSE IF( NCC.LT.0 ) THEN
207
         INFO = -5
208
      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
209
     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
210
         INFO = -9
211
      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
212
         INFO = -11
213
      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
214
     $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
215
         INFO = -13
216
      END IF
217
      IF( INFO.NE.0 ) THEN
218
         CALL XERBLA( 'DBDSQR', -INFO )
219
         RETURN
220
      END IF
221
      IF( N.EQ.0 )
222
     $   RETURN
223
      IF( N.EQ.1 )
224
     $   GO TO 160
225
*
226
*     ROTATE is true if any singular vectors desired, false otherwise
227
*
228
      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
229
*
230
*     If no singular vectors desired, use qd algorithm
231
*
232
      IF( .NOT.ROTATE ) THEN
233
         CALL DLASQ1( N, D, E, WORK, INFO )
234
         RETURN
235
      END IF
236
*
237
      NM1 = N - 1
238
      NM12 = NM1 + NM1
239
      NM13 = NM12 + NM1
240
      IDIR = 0
241
*
242
*     Get machine constants
243
*
244
      EPS = DLAMCH( 'Epsilon' )
245
      UNFL = DLAMCH( 'Safe minimum' )
246
*
247
*     If matrix lower bidiagonal, rotate to be upper bidiagonal
248
*     by applying Givens rotations on the left
249
*
250
      IF( LOWER ) THEN
251
         DO 10 I = 1, N - 1
252
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
253
            D( I ) = R
254
            E( I ) = SN*D( I+1 )
255
            D( I+1 ) = CS*D( I+1 )
256
            WORK( I ) = CS
257
            WORK( NM1+I ) = SN
258
   10    CONTINUE
259
*
260
*        Update singular vectors if desired
261
*
262
         IF( NRU.GT.0 )
263
     $      CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), WORK( N ), U,
264
     $                  LDU )
265
         IF( NCC.GT.0 )
266
     $      CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), WORK( N ), C,
267
     $                  LDC )
268
      END IF
269
*
270
*     Compute singular values to relative accuracy TOL
271
*     (By setting TOL to be negative, algorithm will compute
272
*     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
273
*
274
      TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
275
      TOL = TOLMUL*EPS
276
*
277
*     Compute approximate maximum, minimum singular values
278
*
279
      SMAX = ZERO
280
      DO 20 I = 1, N
281
         SMAX = MAX( SMAX, ABS( D( I ) ) )
282
   20 CONTINUE
283
      DO 30 I = 1, N - 1
284
         SMAX = MAX( SMAX, ABS( E( I ) ) )
285
   30 CONTINUE
286
      SMINL = ZERO
287
      IF( TOL.GE.ZERO ) THEN
288
*
289
*        Relative accuracy desired
290
*
291
         SMINOA = ABS( D( 1 ) )
292
         IF( SMINOA.EQ.ZERO )
293
     $      GO TO 50
294
         MU = SMINOA
295
         DO 40 I = 2, N
296
            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
297
            SMINOA = MIN( SMINOA, MU )
298
            IF( SMINOA.EQ.ZERO )
299
     $         GO TO 50
300
   40    CONTINUE
301
   50    CONTINUE
302
         SMINOA = SMINOA / SQRT( DBLE( N ) )
303
         THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
304
      ELSE
305
*
306
*        Absolute accuracy desired
307
*
308
         THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
309
      END IF
310
*
311
*     Prepare for main iteration loop for the singular values
312
*     (MAXIT is the maximum number of passes through the inner
313
*     loop permitted before nonconvergence signalled.)
314
*
315
      MAXIT = MAXITR*N*N
316
      ITER = 0
317
      OLDLL = -1
318
      OLDM = -1
319
*
320
*     M points to last element of unconverged part of matrix
321
*
322
      M = N
323
*
324
*     Begin main iteration loop
325
*
326
   60 CONTINUE
327
*
328
*     Check for convergence or exceeding iteration count
329
*
330
      IF( M.LE.1 )
331
     $   GO TO 160
332
      IF( ITER.GT.MAXIT )
333
     $   GO TO 200
334
*
335
*     Find diagonal block of matrix to work on
336
*
337
      IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
338
     $   D( M ) = ZERO
339
      SMAX = ABS( D( M ) )
340
      SMIN = SMAX
341
      DO 70 LLL = 1, M - 1
342
         LL = M - LLL
343
         ABSS = ABS( D( LL ) )
344
         ABSE = ABS( E( LL ) )
345
         IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
346
     $      D( LL ) = ZERO
347
         IF( ABSE.LE.THRESH )
348
     $      GO TO 80
349
         SMIN = MIN( SMIN, ABSS )
350
         SMAX = MAX( SMAX, ABSS, ABSE )
351
   70 CONTINUE
352
      LL = 0
353
      GO TO 90
354
   80 CONTINUE
355
      E( LL ) = ZERO
356
*
357
*     Matrix splits since E(LL) = 0
358
*
359
      IF( LL.EQ.M-1 ) THEN
360
*
361
*        Convergence of bottom singular value, return to top of loop
362
*
363
         M = M - 1
364
         GO TO 60
365
      END IF
366
   90 CONTINUE
367
      LL = LL + 1
368
*
369
*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
370
*
371
      IF( LL.EQ.M-1 ) THEN
372
*
373
*        2 by 2 block, handle separately
374
*
375
         CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
376
     $                COSR, SINL, COSL )
377
         D( M-1 ) = SIGMX
378
         E( M-1 ) = ZERO
379
         D( M ) = SIGMN
380
*
381
*        Compute singular vectors, if desired
382
*
383
         IF( NCVT.GT.0 )
384
     $      CALL DROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, COSR,
385
     $                 SINR )
386
         IF( NRU.GT.0 )
387
     $      CALL DROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
388
         IF( NCC.GT.0 )
389
     $      CALL DROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
390
     $                 SINL )
391
         M = M - 2
392
         GO TO 60
393
      END IF
394
*
395
*     If working on new submatrix, choose shift direction
396
*     (from larger end diagonal element towards smaller)
397
*
398
      IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
399
         IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
400
*
401
*           Chase bulge from top (big end) to bottom (small end)
402
*
403
            IDIR = 1
404
         ELSE
405
*
406
*           Chase bulge from bottom (big end) to top (small end)
407
*
408
            IDIR = 2
409
         END IF
410
      END IF
411
*
412
*     Apply convergence tests
413
*
414
      IF( IDIR.EQ.1 ) THEN
415
*
416
*        Run convergence test in forward direction
417
*        First apply standard test to bottom of matrix
418
*
419
         IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
420
     $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
421
            E( M-1 ) = ZERO
422
            GO TO 60
423
         END IF
424
*
425
         IF( TOL.GE.ZERO ) THEN
426
*
427
*           If relative accuracy desired,
428
*           apply convergence criterion forward
429
*
430
            MU = ABS( D( LL ) )
431
            SMINL = MU
432
            DO 100 LLL = LL, M - 1
433
               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
434
                  E( LLL ) = ZERO
435
                  GO TO 60
436
               END IF
437
               MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
438
               SMINL = MIN( SMINL, MU )
439
  100       CONTINUE
440
         END IF
441
*
442
      ELSE
443
*
444
*        Run convergence test in backward direction
445
*        First apply standard test to top of matrix
446
*
447
         IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
448
     $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
449
            E( LL ) = ZERO
450
            GO TO 60
451
         END IF
452
*
453
         IF( TOL.GE.ZERO ) THEN
454
*
455
*           If relative accuracy desired,
456
*           apply convergence criterion backward
457
*
458
            MU = ABS( D( M ) )
459
            SMINL = MU
460
            DO 110 LLL = M - 1, LL, -1
461
               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
462
                  E( LLL ) = ZERO
463
                  GO TO 60
464
               END IF
465
               MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
466
               SMINL = MIN( SMINL, MU )
467
  110       CONTINUE
468
         END IF
469
      END IF
470
      OLDLL = LL
471
      OLDM = M
472
*
473
*     Compute shift.  First, test if shifting would ruin relative
474
*     accuracy, and if so set the shift to zero.
475
*
476
      IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
477
     $    MAX( EPS, HNDRTH*TOL ) ) THEN
478
*
479
*        Use a zero shift to avoid loss of relative accuracy
480
*
481
         SHIFT = ZERO
482
      ELSE
483
*
484
*        Compute the shift from 2-by-2 block at end of matrix
485
*
486
         IF( IDIR.EQ.1 ) THEN
487
            SLL = ABS( D( LL ) )
488
            CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
489
         ELSE
490
            SLL = ABS( D( M ) )
491
            CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
492
         END IF
493
*
494
*        Test if shift negligible, and if so set to zero
495
*
496
         IF( SLL.GT.ZERO ) THEN
497
            IF( ( SHIFT / SLL )**2.LT.EPS )
498
     $         SHIFT = ZERO
499
         END IF
500
      END IF
501
*
502
*     Increment iteration count
503
*
504
      ITER = ITER + M - LL
505
*
506
*     If SHIFT = 0, do simplified QR iteration
507
*
508
      IF( SHIFT.EQ.ZERO ) THEN
509
         IF( IDIR.EQ.1 ) THEN
510
*
511
*           Chase bulge from top to bottom
512
*           Save cosines and sines for later singular vector updates
513
*
514
            CS = ONE
515
            OLDCS = ONE
516
            DO 120 I = LL, M - 1
517
               CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
518
               IF( I.GT.LL )
519
     $            E( I-1 ) = OLDSN*R
520
               CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
521
               WORK( I-LL+1 ) = CS
522
               WORK( I-LL+1+NM1 ) = SN
523
               WORK( I-LL+1+NM12 ) = OLDCS
524
               WORK( I-LL+1+NM13 ) = OLDSN
525
  120       CONTINUE
526
            H = D( M )*CS
527
            D( M ) = H*OLDCS
528
            E( M-1 ) = H*OLDSN
529
*
530
*           Update singular vectors
531
*
532
            IF( NCVT.GT.0 )
533
     $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
534
     $                     WORK( N ), VT( LL, 1 ), LDVT )
535
            IF( NRU.GT.0 )
536
     $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
537
     $                     WORK( NM13+1 ), U( 1, LL ), LDU )
538
            IF( NCC.GT.0 )
539
     $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
540
     $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
541
*
542
*           Test convergence
543
*
544
            IF( ABS( E( M-1 ) ).LE.THRESH )
545
     $         E( M-1 ) = ZERO
546
*
547
         ELSE
548
*
549
*           Chase bulge from bottom to top
550
*           Save cosines and sines for later singular vector updates
551
*
552
            CS = ONE
553
            OLDCS = ONE
554
            DO 130 I = M, LL + 1, -1
555
               CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
556
               IF( I.LT.M )
557
     $            E( I ) = OLDSN*R
558
               CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
559
               WORK( I-LL ) = CS
560
               WORK( I-LL+NM1 ) = -SN
561
               WORK( I-LL+NM12 ) = OLDCS
562
               WORK( I-LL+NM13 ) = -OLDSN
563
  130       CONTINUE
564
            H = D( LL )*CS
565
            D( LL ) = H*OLDCS
566
            E( LL ) = H*OLDSN
567
*
568
*           Update singular vectors
569
*
570
            IF( NCVT.GT.0 )
571
     $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
572
     $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
573
            IF( NRU.GT.0 )
574
     $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
575
     $                     WORK( N ), U( 1, LL ), LDU )
576
            IF( NCC.GT.0 )
577
     $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
578
     $                     WORK( N ), C( LL, 1 ), LDC )
579
*
580
*           Test convergence
581
*
582
            IF( ABS( E( LL ) ).LE.THRESH )
583
     $         E( LL ) = ZERO
584
         END IF
585
      ELSE
586
*
587
*        Use nonzero shift
588
*
589
         IF( IDIR.EQ.1 ) THEN
590
*
591
*           Chase bulge from top to bottom
592
*           Save cosines and sines for later singular vector updates
593
*
594
            F = ( ABS( D( LL ) )-SHIFT )*
595
     $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
596
            G = E( LL )
597
            DO 140 I = LL, M - 1
598
               CALL DLARTG( F, G, COSR, SINR, R )
599
               IF( I.GT.LL )
600
     $            E( I-1 ) = R
601
               F = COSR*D( I ) + SINR*E( I )
602
               E( I ) = COSR*E( I ) - SINR*D( I )
603
               G = SINR*D( I+1 )
604
               D( I+1 ) = COSR*D( I+1 )
605
               CALL DLARTG( F, G, COSL, SINL, R )
606
               D( I ) = R
607
               F = COSL*E( I ) + SINL*D( I+1 )
608
               D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
609
               IF( I.LT.M-1 ) THEN
610
                  G = SINL*E( I+1 )
611
                  E( I+1 ) = COSL*E( I+1 )
612
               END IF
613
               WORK( I-LL+1 ) = COSR
614
               WORK( I-LL+1+NM1 ) = SINR
615
               WORK( I-LL+1+NM12 ) = COSL
616
               WORK( I-LL+1+NM13 ) = SINL
617
  140       CONTINUE
618
            E( M-1 ) = F
619
*
620
*           Update singular vectors
621
*
622
            IF( NCVT.GT.0 )
623
     $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
624
     $                     WORK( N ), VT( LL, 1 ), LDVT )
625
            IF( NRU.GT.0 )
626
     $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
627
     $                     WORK( NM13+1 ), U( 1, LL ), LDU )
628
            IF( NCC.GT.0 )
629
     $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
630
     $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
631
*
632
*           Test convergence
633
*
634
            IF( ABS( E( M-1 ) ).LE.THRESH )
635
     $         E( M-1 ) = ZERO
636
*
637
         ELSE
638
*
639
*           Chase bulge from bottom to top
640
*           Save cosines and sines for later singular vector updates
641
*
642
            F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
643
     $          D( M ) )
644
            G = E( M-1 )
645
            DO 150 I = M, LL + 1, -1
646
               CALL DLARTG( F, G, COSR, SINR, R )
647
               IF( I.LT.M )
648
     $            E( I ) = R
649
               F = COSR*D( I ) + SINR*E( I-1 )
650
               E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
651
               G = SINR*D( I-1 )
652
               D( I-1 ) = COSR*D( I-1 )
653
               CALL DLARTG( F, G, COSL, SINL, R )
654
               D( I ) = R
655
               F = COSL*E( I-1 ) + SINL*D( I-1 )
656
               D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
657
               IF( I.GT.LL+1 ) THEN
658
                  G = SINL*E( I-2 )
659
                  E( I-2 ) = COSL*E( I-2 )
660
               END IF
661
               WORK( I-LL ) = COSR
662
               WORK( I-LL+NM1 ) = -SINR
663
               WORK( I-LL+NM12 ) = COSL
664
               WORK( I-LL+NM13 ) = -SINL
665
  150       CONTINUE
666
            E( LL ) = F
667
*
668
*           Test convergence
669
*
670
            IF( ABS( E( LL ) ).LE.THRESH )
671
     $         E( LL ) = ZERO
672
*
673
*           Update singular vectors if desired
674
*
675
            IF( NCVT.GT.0 )
676
     $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
677
     $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
678
            IF( NRU.GT.0 )
679
     $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
680
     $                     WORK( N ), U( 1, LL ), LDU )
681
            IF( NCC.GT.0 )
682
     $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
683
     $                     WORK( N ), C( LL, 1 ), LDC )
684
         END IF
685
      END IF
686
*
687
*     QR iteration finished, go back and check convergence
688
*
689
      GO TO 60
690
*
691
*     All singular values converged, so make them positive
692
*
693
  160 CONTINUE
694
      DO 170 I = 1, N
695
         IF( D( I ).LT.ZERO ) THEN
696
            D( I ) = -D( I )
697
*
698
*           Change sign of singular vectors, if desired
699
*
700
            IF( NCVT.GT.0 )
701
     $         CALL DSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
702
         END IF
703
  170 CONTINUE
704
*
705
*     Sort the singular values into decreasing order (insertion sort on
706
*     singular values, but only one transposition per singular vector)
707
*
708
      DO 190 I = 1, N - 1
709
*
710
*        Scan for smallest D(I)
711
*
712
         ISUB = 1
713
         SMIN = D( 1 )
714
         DO 180 J = 2, N + 1 - I
715
            IF( D( J ).LE.SMIN ) THEN
716
               ISUB = J
717
               SMIN = D( J )
718
            END IF
719
  180    CONTINUE
720
         IF( ISUB.NE.N+1-I ) THEN
721
*
722
*           Swap singular values and vectors
723
*
724
            D( ISUB ) = D( N+1-I )
725
            D( N+1-I ) = SMIN
726
            IF( NCVT.GT.0 )
727
     $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
728
     $                     LDVT )
729
            IF( NRU.GT.0 )
730
     $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
731
            IF( NCC.GT.0 )
732
     $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
733
         END IF
734
  190 CONTINUE
735
      GO TO 220
736
*
737
*     Maximum number of iterations exceeded, failure to converge
738
*
739
  200 CONTINUE
740
      INFO = 0
741
      DO 210 I = 1, N - 1
742
         IF( E( I ).NE.ZERO )
743
     $      INFO = INFO + 1
744
  210 CONTINUE
745
  220 CONTINUE
746
      RETURN
747
*
748
*     End of DBDSQR
749
*
750
      END