root / src / blas / ztpmv.f @ 11
Historique | Voir | Annoter | Télécharger (10,58 ko)
1 |
SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
DOUBLE COMPLEX AP(*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* ZTPMV performs one of the matrix-vector operations |
14 |
* |
15 |
* x := A*x, or x := A'*x, or x := conjg( A' )*x, |
16 |
* |
17 |
* where x is an n element vector and A is an n by n unit, or non-unit, |
18 |
* upper or lower triangular matrix, supplied in packed form. |
19 |
* |
20 |
* Arguments |
21 |
* ========== |
22 |
* |
23 |
* UPLO - CHARACTER*1. |
24 |
* On entry, UPLO specifies whether the matrix is an upper or |
25 |
* lower triangular matrix as follows: |
26 |
* |
27 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
28 |
* |
29 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
30 |
* |
31 |
* Unchanged on exit. |
32 |
* |
33 |
* TRANS - CHARACTER*1. |
34 |
* On entry, TRANS specifies the operation to be performed as |
35 |
* follows: |
36 |
* |
37 |
* TRANS = 'N' or 'n' x := A*x. |
38 |
* |
39 |
* TRANS = 'T' or 't' x := A'*x. |
40 |
* |
41 |
* TRANS = 'C' or 'c' x := conjg( A' )*x. |
42 |
* |
43 |
* Unchanged on exit. |
44 |
* |
45 |
* DIAG - CHARACTER*1. |
46 |
* On entry, DIAG specifies whether or not A is unit |
47 |
* triangular as follows: |
48 |
* |
49 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
50 |
* |
51 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
52 |
* triangular. |
53 |
* |
54 |
* Unchanged on exit. |
55 |
* |
56 |
* N - INTEGER. |
57 |
* On entry, N specifies the order of the matrix A. |
58 |
* N must be at least zero. |
59 |
* Unchanged on exit. |
60 |
* |
61 |
* AP - COMPLEX*16 array of DIMENSION at least |
62 |
* ( ( n*( n + 1 ) )/2 ). |
63 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
64 |
* contain the upper triangular matrix packed sequentially, |
65 |
* column by column, so that AP( 1 ) contains a( 1, 1 ), |
66 |
* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) |
67 |
* respectively, and so on. |
68 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
69 |
* contain the lower triangular matrix packed sequentially, |
70 |
* column by column, so that AP( 1 ) contains a( 1, 1 ), |
71 |
* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) |
72 |
* respectively, and so on. |
73 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
74 |
* A are not referenced, but are assumed to be unity. |
75 |
* Unchanged on exit. |
76 |
* |
77 |
* X - COMPLEX*16 array of dimension at least |
78 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
79 |
* Before entry, the incremented array X must contain the n |
80 |
* element vector x. On exit, X is overwritten with the |
81 |
* tranformed vector x. |
82 |
* |
83 |
* INCX - INTEGER. |
84 |
* On entry, INCX specifies the increment for the elements of |
85 |
* X. INCX must not be zero. |
86 |
* Unchanged on exit. |
87 |
* |
88 |
* |
89 |
* Level 2 Blas routine. |
90 |
* |
91 |
* -- Written on 22-October-1986. |
92 |
* Jack Dongarra, Argonne National Lab. |
93 |
* Jeremy Du Croz, Nag Central Office. |
94 |
* Sven Hammarling, Nag Central Office. |
95 |
* Richard Hanson, Sandia National Labs. |
96 |
* |
97 |
* |
98 |
* .. Parameters .. |
99 |
DOUBLE COMPLEX ZERO |
100 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
101 |
* .. |
102 |
* .. Local Scalars .. |
103 |
DOUBLE COMPLEX TEMP |
104 |
INTEGER I,INFO,IX,J,JX,K,KK,KX |
105 |
LOGICAL NOCONJ,NOUNIT |
106 |
* .. |
107 |
* .. External Functions .. |
108 |
LOGICAL LSAME |
109 |
EXTERNAL LSAME |
110 |
* .. |
111 |
* .. External Subroutines .. |
112 |
EXTERNAL XERBLA |
113 |
* .. |
114 |
* .. Intrinsic Functions .. |
115 |
INTRINSIC DCONJG |
116 |
* .. |
117 |
* |
118 |
* Test the input parameters. |
119 |
* |
120 |
INFO = 0 |
121 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
122 |
INFO = 1 |
123 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
124 |
+ .NOT.LSAME(TRANS,'C')) THEN |
125 |
INFO = 2 |
126 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
127 |
INFO = 3 |
128 |
ELSE IF (N.LT.0) THEN |
129 |
INFO = 4 |
130 |
ELSE IF (INCX.EQ.0) THEN |
131 |
INFO = 7 |
132 |
END IF |
133 |
IF (INFO.NE.0) THEN |
134 |
CALL XERBLA('ZTPMV ',INFO) |
135 |
RETURN |
136 |
END IF |
137 |
* |
138 |
* Quick return if possible. |
139 |
* |
140 |
IF (N.EQ.0) RETURN |
141 |
* |
142 |
NOCONJ = LSAME(TRANS,'T') |
143 |
NOUNIT = LSAME(DIAG,'N') |
144 |
* |
145 |
* Set up the start point in X if the increment is not unity. This |
146 |
* will be ( N - 1 )*INCX too small for descending loops. |
147 |
* |
148 |
IF (INCX.LE.0) THEN |
149 |
KX = 1 - (N-1)*INCX |
150 |
ELSE IF (INCX.NE.1) THEN |
151 |
KX = 1 |
152 |
END IF |
153 |
* |
154 |
* Start the operations. In this version the elements of AP are |
155 |
* accessed sequentially with one pass through AP. |
156 |
* |
157 |
IF (LSAME(TRANS,'N')) THEN |
158 |
* |
159 |
* Form x:= A*x. |
160 |
* |
161 |
IF (LSAME(UPLO,'U')) THEN |
162 |
KK = 1 |
163 |
IF (INCX.EQ.1) THEN |
164 |
DO 20 J = 1,N |
165 |
IF (X(J).NE.ZERO) THEN |
166 |
TEMP = X(J) |
167 |
K = KK |
168 |
DO 10 I = 1,J - 1 |
169 |
X(I) = X(I) + TEMP*AP(K) |
170 |
K = K + 1 |
171 |
10 CONTINUE |
172 |
IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) |
173 |
END IF |
174 |
KK = KK + J |
175 |
20 CONTINUE |
176 |
ELSE |
177 |
JX = KX |
178 |
DO 40 J = 1,N |
179 |
IF (X(JX).NE.ZERO) THEN |
180 |
TEMP = X(JX) |
181 |
IX = KX |
182 |
DO 30 K = KK,KK + J - 2 |
183 |
X(IX) = X(IX) + TEMP*AP(K) |
184 |
IX = IX + INCX |
185 |
30 CONTINUE |
186 |
IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) |
187 |
END IF |
188 |
JX = JX + INCX |
189 |
KK = KK + J |
190 |
40 CONTINUE |
191 |
END IF |
192 |
ELSE |
193 |
KK = (N* (N+1))/2 |
194 |
IF (INCX.EQ.1) THEN |
195 |
DO 60 J = N,1,-1 |
196 |
IF (X(J).NE.ZERO) THEN |
197 |
TEMP = X(J) |
198 |
K = KK |
199 |
DO 50 I = N,J + 1,-1 |
200 |
X(I) = X(I) + TEMP*AP(K) |
201 |
K = K - 1 |
202 |
50 CONTINUE |
203 |
IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) |
204 |
END IF |
205 |
KK = KK - (N-J+1) |
206 |
60 CONTINUE |
207 |
ELSE |
208 |
KX = KX + (N-1)*INCX |
209 |
JX = KX |
210 |
DO 80 J = N,1,-1 |
211 |
IF (X(JX).NE.ZERO) THEN |
212 |
TEMP = X(JX) |
213 |
IX = KX |
214 |
DO 70 K = KK,KK - (N- (J+1)),-1 |
215 |
X(IX) = X(IX) + TEMP*AP(K) |
216 |
IX = IX - INCX |
217 |
70 CONTINUE |
218 |
IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) |
219 |
END IF |
220 |
JX = JX - INCX |
221 |
KK = KK - (N-J+1) |
222 |
80 CONTINUE |
223 |
END IF |
224 |
END IF |
225 |
ELSE |
226 |
* |
227 |
* Form x := A'*x or x := conjg( A' )*x. |
228 |
* |
229 |
IF (LSAME(UPLO,'U')) THEN |
230 |
KK = (N* (N+1))/2 |
231 |
IF (INCX.EQ.1) THEN |
232 |
DO 110 J = N,1,-1 |
233 |
TEMP = X(J) |
234 |
K = KK - 1 |
235 |
IF (NOCONJ) THEN |
236 |
IF (NOUNIT) TEMP = TEMP*AP(KK) |
237 |
DO 90 I = J - 1,1,-1 |
238 |
TEMP = TEMP + AP(K)*X(I) |
239 |
K = K - 1 |
240 |
90 CONTINUE |
241 |
ELSE |
242 |
IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
243 |
DO 100 I = J - 1,1,-1 |
244 |
TEMP = TEMP + DCONJG(AP(K))*X(I) |
245 |
K = K - 1 |
246 |
100 CONTINUE |
247 |
END IF |
248 |
X(J) = TEMP |
249 |
KK = KK - J |
250 |
110 CONTINUE |
251 |
ELSE |
252 |
JX = KX + (N-1)*INCX |
253 |
DO 140 J = N,1,-1 |
254 |
TEMP = X(JX) |
255 |
IX = JX |
256 |
IF (NOCONJ) THEN |
257 |
IF (NOUNIT) TEMP = TEMP*AP(KK) |
258 |
DO 120 K = KK - 1,KK - J + 1,-1 |
259 |
IX = IX - INCX |
260 |
TEMP = TEMP + AP(K)*X(IX) |
261 |
120 CONTINUE |
262 |
ELSE |
263 |
IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
264 |
DO 130 K = KK - 1,KK - J + 1,-1 |
265 |
IX = IX - INCX |
266 |
TEMP = TEMP + DCONJG(AP(K))*X(IX) |
267 |
130 CONTINUE |
268 |
END IF |
269 |
X(JX) = TEMP |
270 |
JX = JX - INCX |
271 |
KK = KK - J |
272 |
140 CONTINUE |
273 |
END IF |
274 |
ELSE |
275 |
KK = 1 |
276 |
IF (INCX.EQ.1) THEN |
277 |
DO 170 J = 1,N |
278 |
TEMP = X(J) |
279 |
K = KK + 1 |
280 |
IF (NOCONJ) THEN |
281 |
IF (NOUNIT) TEMP = TEMP*AP(KK) |
282 |
DO 150 I = J + 1,N |
283 |
TEMP = TEMP + AP(K)*X(I) |
284 |
K = K + 1 |
285 |
150 CONTINUE |
286 |
ELSE |
287 |
IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
288 |
DO 160 I = J + 1,N |
289 |
TEMP = TEMP + DCONJG(AP(K))*X(I) |
290 |
K = K + 1 |
291 |
160 CONTINUE |
292 |
END IF |
293 |
X(J) = TEMP |
294 |
KK = KK + (N-J+1) |
295 |
170 CONTINUE |
296 |
ELSE |
297 |
JX = KX |
298 |
DO 200 J = 1,N |
299 |
TEMP = X(JX) |
300 |
IX = JX |
301 |
IF (NOCONJ) THEN |
302 |
IF (NOUNIT) TEMP = TEMP*AP(KK) |
303 |
DO 180 K = KK + 1,KK + N - J |
304 |
IX = IX + INCX |
305 |
TEMP = TEMP + AP(K)*X(IX) |
306 |
180 CONTINUE |
307 |
ELSE |
308 |
IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
309 |
DO 190 K = KK + 1,KK + N - J |
310 |
IX = IX + INCX |
311 |
TEMP = TEMP + DCONJG(AP(K))*X(IX) |
312 |
190 CONTINUE |
313 |
END IF |
314 |
X(JX) = TEMP |
315 |
JX = JX + INCX |
316 |
KK = KK + (N-J+1) |
317 |
200 CONTINUE |
318 |
END IF |
319 |
END IF |
320 |
END IF |
321 |
* |
322 |
RETURN |
323 |
* |
324 |
* End of ZTPMV . |
325 |
* |
326 |
END |