root / src / blas / zsyr2k.f @ 11
Historique | Voir | Annoter | Télécharger (10,49 ko)
1 |
SUBROUTINE ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE COMPLEX ALPHA,BETA |
4 |
INTEGER K,LDA,LDB,LDC,N |
5 |
CHARACTER TRANS,UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZSYR2K performs one of the symmetric rank 2k operations |
15 |
* |
16 |
* C := alpha*A*B' + alpha*B*A' + beta*C, |
17 |
* |
18 |
* or |
19 |
* |
20 |
* C := alpha*A'*B + alpha*B'*A + beta*C, |
21 |
* |
22 |
* where alpha and beta are scalars, C is an n by n symmetric matrix |
23 |
* and A and B are n by k matrices in the first case and k by n |
24 |
* matrices in the second case. |
25 |
* |
26 |
* Arguments |
27 |
* ========== |
28 |
* |
29 |
* UPLO - CHARACTER*1. |
30 |
* On entry, UPLO specifies whether the upper or lower |
31 |
* triangular part of the array C is to be referenced as |
32 |
* follows: |
33 |
* |
34 |
* UPLO = 'U' or 'u' Only the upper triangular part of C |
35 |
* is to be referenced. |
36 |
* |
37 |
* UPLO = 'L' or 'l' Only the lower triangular part of C |
38 |
* is to be referenced. |
39 |
* |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* TRANS - CHARACTER*1. |
43 |
* On entry, TRANS specifies the operation to be performed as |
44 |
* follows: |
45 |
* |
46 |
* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + |
47 |
* beta*C. |
48 |
* |
49 |
* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + |
50 |
* beta*C. |
51 |
* |
52 |
* Unchanged on exit. |
53 |
* |
54 |
* N - INTEGER. |
55 |
* On entry, N specifies the order of the matrix C. N must be |
56 |
* at least zero. |
57 |
* Unchanged on exit. |
58 |
* |
59 |
* K - INTEGER. |
60 |
* On entry with TRANS = 'N' or 'n', K specifies the number |
61 |
* of columns of the matrices A and B, and on entry with |
62 |
* TRANS = 'T' or 't', K specifies the number of rows of the |
63 |
* matrices A and B. K must be at least zero. |
64 |
* Unchanged on exit. |
65 |
* |
66 |
* ALPHA - COMPLEX*16 . |
67 |
* On entry, ALPHA specifies the scalar alpha. |
68 |
* Unchanged on exit. |
69 |
* |
70 |
* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is |
71 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
72 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
73 |
* part of the array A must contain the matrix A, otherwise |
74 |
* the leading k by n part of the array A must contain the |
75 |
* matrix A. |
76 |
* Unchanged on exit. |
77 |
* |
78 |
* LDA - INTEGER. |
79 |
* On entry, LDA specifies the first dimension of A as declared |
80 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
81 |
* then LDA must be at least max( 1, n ), otherwise LDA must |
82 |
* be at least max( 1, k ). |
83 |
* Unchanged on exit. |
84 |
* |
85 |
* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is |
86 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
87 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
88 |
* part of the array B must contain the matrix B, otherwise |
89 |
* the leading k by n part of the array B must contain the |
90 |
* matrix B. |
91 |
* Unchanged on exit. |
92 |
* |
93 |
* LDB - INTEGER. |
94 |
* On entry, LDB specifies the first dimension of B as declared |
95 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
96 |
* then LDB must be at least max( 1, n ), otherwise LDB must |
97 |
* be at least max( 1, k ). |
98 |
* Unchanged on exit. |
99 |
* |
100 |
* BETA - COMPLEX*16 . |
101 |
* On entry, BETA specifies the scalar beta. |
102 |
* Unchanged on exit. |
103 |
* |
104 |
* C - COMPLEX*16 array of DIMENSION ( LDC, n ). |
105 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
106 |
* upper triangular part of the array C must contain the upper |
107 |
* triangular part of the symmetric matrix and the strictly |
108 |
* lower triangular part of C is not referenced. On exit, the |
109 |
* upper triangular part of the array C is overwritten by the |
110 |
* upper triangular part of the updated matrix. |
111 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
112 |
* lower triangular part of the array C must contain the lower |
113 |
* triangular part of the symmetric matrix and the strictly |
114 |
* upper triangular part of C is not referenced. On exit, the |
115 |
* lower triangular part of the array C is overwritten by the |
116 |
* lower triangular part of the updated matrix. |
117 |
* |
118 |
* LDC - INTEGER. |
119 |
* On entry, LDC specifies the first dimension of C as declared |
120 |
* in the calling (sub) program. LDC must be at least |
121 |
* max( 1, n ). |
122 |
* Unchanged on exit. |
123 |
* |
124 |
* |
125 |
* Level 3 Blas routine. |
126 |
* |
127 |
* -- Written on 8-February-1989. |
128 |
* Jack Dongarra, Argonne National Laboratory. |
129 |
* Iain Duff, AERE Harwell. |
130 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
131 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
132 |
* |
133 |
* |
134 |
* .. External Functions .. |
135 |
LOGICAL LSAME |
136 |
EXTERNAL LSAME |
137 |
* .. |
138 |
* .. External Subroutines .. |
139 |
EXTERNAL XERBLA |
140 |
* .. |
141 |
* .. Intrinsic Functions .. |
142 |
INTRINSIC MAX |
143 |
* .. |
144 |
* .. Local Scalars .. |
145 |
DOUBLE COMPLEX TEMP1,TEMP2 |
146 |
INTEGER I,INFO,J,L,NROWA |
147 |
LOGICAL UPPER |
148 |
* .. |
149 |
* .. Parameters .. |
150 |
DOUBLE COMPLEX ONE |
151 |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
152 |
DOUBLE COMPLEX ZERO |
153 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
154 |
* .. |
155 |
* |
156 |
* Test the input parameters. |
157 |
* |
158 |
IF (LSAME(TRANS,'N')) THEN |
159 |
NROWA = N |
160 |
ELSE |
161 |
NROWA = K |
162 |
END IF |
163 |
UPPER = LSAME(UPLO,'U') |
164 |
* |
165 |
INFO = 0 |
166 |
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
167 |
INFO = 1 |
168 |
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
169 |
+ (.NOT.LSAME(TRANS,'T'))) THEN |
170 |
INFO = 2 |
171 |
ELSE IF (N.LT.0) THEN |
172 |
INFO = 3 |
173 |
ELSE IF (K.LT.0) THEN |
174 |
INFO = 4 |
175 |
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
176 |
INFO = 7 |
177 |
ELSE IF (LDB.LT.MAX(1,NROWA)) THEN |
178 |
INFO = 9 |
179 |
ELSE IF (LDC.LT.MAX(1,N)) THEN |
180 |
INFO = 12 |
181 |
END IF |
182 |
IF (INFO.NE.0) THEN |
183 |
CALL XERBLA('ZSYR2K',INFO) |
184 |
RETURN |
185 |
END IF |
186 |
* |
187 |
* Quick return if possible. |
188 |
* |
189 |
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
190 |
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
191 |
* |
192 |
* And when alpha.eq.zero. |
193 |
* |
194 |
IF (ALPHA.EQ.ZERO) THEN |
195 |
IF (UPPER) THEN |
196 |
IF (BETA.EQ.ZERO) THEN |
197 |
DO 20 J = 1,N |
198 |
DO 10 I = 1,J |
199 |
C(I,J) = ZERO |
200 |
10 CONTINUE |
201 |
20 CONTINUE |
202 |
ELSE |
203 |
DO 40 J = 1,N |
204 |
DO 30 I = 1,J |
205 |
C(I,J) = BETA*C(I,J) |
206 |
30 CONTINUE |
207 |
40 CONTINUE |
208 |
END IF |
209 |
ELSE |
210 |
IF (BETA.EQ.ZERO) THEN |
211 |
DO 60 J = 1,N |
212 |
DO 50 I = J,N |
213 |
C(I,J) = ZERO |
214 |
50 CONTINUE |
215 |
60 CONTINUE |
216 |
ELSE |
217 |
DO 80 J = 1,N |
218 |
DO 70 I = J,N |
219 |
C(I,J) = BETA*C(I,J) |
220 |
70 CONTINUE |
221 |
80 CONTINUE |
222 |
END IF |
223 |
END IF |
224 |
RETURN |
225 |
END IF |
226 |
* |
227 |
* Start the operations. |
228 |
* |
229 |
IF (LSAME(TRANS,'N')) THEN |
230 |
* |
231 |
* Form C := alpha*A*B' + alpha*B*A' + C. |
232 |
* |
233 |
IF (UPPER) THEN |
234 |
DO 130 J = 1,N |
235 |
IF (BETA.EQ.ZERO) THEN |
236 |
DO 90 I = 1,J |
237 |
C(I,J) = ZERO |
238 |
90 CONTINUE |
239 |
ELSE IF (BETA.NE.ONE) THEN |
240 |
DO 100 I = 1,J |
241 |
C(I,J) = BETA*C(I,J) |
242 |
100 CONTINUE |
243 |
END IF |
244 |
DO 120 L = 1,K |
245 |
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
246 |
TEMP1 = ALPHA*B(J,L) |
247 |
TEMP2 = ALPHA*A(J,L) |
248 |
DO 110 I = 1,J |
249 |
C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
250 |
+ B(I,L)*TEMP2 |
251 |
110 CONTINUE |
252 |
END IF |
253 |
120 CONTINUE |
254 |
130 CONTINUE |
255 |
ELSE |
256 |
DO 180 J = 1,N |
257 |
IF (BETA.EQ.ZERO) THEN |
258 |
DO 140 I = J,N |
259 |
C(I,J) = ZERO |
260 |
140 CONTINUE |
261 |
ELSE IF (BETA.NE.ONE) THEN |
262 |
DO 150 I = J,N |
263 |
C(I,J) = BETA*C(I,J) |
264 |
150 CONTINUE |
265 |
END IF |
266 |
DO 170 L = 1,K |
267 |
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
268 |
TEMP1 = ALPHA*B(J,L) |
269 |
TEMP2 = ALPHA*A(J,L) |
270 |
DO 160 I = J,N |
271 |
C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
272 |
+ B(I,L)*TEMP2 |
273 |
160 CONTINUE |
274 |
END IF |
275 |
170 CONTINUE |
276 |
180 CONTINUE |
277 |
END IF |
278 |
ELSE |
279 |
* |
280 |
* Form C := alpha*A'*B + alpha*B'*A + C. |
281 |
* |
282 |
IF (UPPER) THEN |
283 |
DO 210 J = 1,N |
284 |
DO 200 I = 1,J |
285 |
TEMP1 = ZERO |
286 |
TEMP2 = ZERO |
287 |
DO 190 L = 1,K |
288 |
TEMP1 = TEMP1 + A(L,I)*B(L,J) |
289 |
TEMP2 = TEMP2 + B(L,I)*A(L,J) |
290 |
190 CONTINUE |
291 |
IF (BETA.EQ.ZERO) THEN |
292 |
C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 |
293 |
ELSE |
294 |
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
295 |
+ ALPHA*TEMP2 |
296 |
END IF |
297 |
200 CONTINUE |
298 |
210 CONTINUE |
299 |
ELSE |
300 |
DO 240 J = 1,N |
301 |
DO 230 I = J,N |
302 |
TEMP1 = ZERO |
303 |
TEMP2 = ZERO |
304 |
DO 220 L = 1,K |
305 |
TEMP1 = TEMP1 + A(L,I)*B(L,J) |
306 |
TEMP2 = TEMP2 + B(L,I)*A(L,J) |
307 |
220 CONTINUE |
308 |
IF (BETA.EQ.ZERO) THEN |
309 |
C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 |
310 |
ELSE |
311 |
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
312 |
+ ALPHA*TEMP2 |
313 |
END IF |
314 |
230 CONTINUE |
315 |
240 CONTINUE |
316 |
END IF |
317 |
END IF |
318 |
* |
319 |
RETURN |
320 |
* |
321 |
* End of ZSYR2K. |
322 |
* |
323 |
END |