root / src / blas / zhpr.f @ 11
Historique | Voir | Annoter | Télécharger (6,62 ko)
1 |
SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE PRECISION ALPHA |
4 |
INTEGER INCX,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX AP(*),X(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHPR performs the hermitian rank 1 operation |
15 |
* |
16 |
* A := alpha*x*conjg( x' ) + A, |
17 |
* |
18 |
* where alpha is a real scalar, x is an n element vector and A is an |
19 |
* n by n hermitian matrix, supplied in packed form. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the matrix A is supplied in the packed |
27 |
* array AP as follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' The upper triangular part of A is |
30 |
* supplied in AP. |
31 |
* |
32 |
* UPLO = 'L' or 'l' The lower triangular part of A is |
33 |
* supplied in AP. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - DOUBLE PRECISION. |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* X - COMPLEX*16 array of dimension at least |
47 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
48 |
* Before entry, the incremented array X must contain the n |
49 |
* element vector x. |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* INCX - INTEGER. |
53 |
* On entry, INCX specifies the increment for the elements of |
54 |
* X. INCX must not be zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* AP - COMPLEX*16 array of DIMENSION at least |
58 |
* ( ( n*( n + 1 ) )/2 ). |
59 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
60 |
* contain the upper triangular part of the hermitian matrix |
61 |
* packed sequentially, column by column, so that AP( 1 ) |
62 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
63 |
* and a( 2, 2 ) respectively, and so on. On exit, the array |
64 |
* AP is overwritten by the upper triangular part of the |
65 |
* updated matrix. |
66 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
67 |
* contain the lower triangular part of the hermitian matrix |
68 |
* packed sequentially, column by column, so that AP( 1 ) |
69 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
70 |
* and a( 3, 1 ) respectively, and so on. On exit, the array |
71 |
* AP is overwritten by the lower triangular part of the |
72 |
* updated matrix. |
73 |
* Note that the imaginary parts of the diagonal elements need |
74 |
* not be set, they are assumed to be zero, and on exit they |
75 |
* are set to zero. |
76 |
* |
77 |
* |
78 |
* Level 2 Blas routine. |
79 |
* |
80 |
* -- Written on 22-October-1986. |
81 |
* Jack Dongarra, Argonne National Lab. |
82 |
* Jeremy Du Croz, Nag Central Office. |
83 |
* Sven Hammarling, Nag Central Office. |
84 |
* Richard Hanson, Sandia National Labs. |
85 |
* |
86 |
* |
87 |
* .. Parameters .. |
88 |
DOUBLE COMPLEX ZERO |
89 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
90 |
* .. |
91 |
* .. Local Scalars .. |
92 |
DOUBLE COMPLEX TEMP |
93 |
INTEGER I,INFO,IX,J,JX,K,KK,KX |
94 |
* .. |
95 |
* .. External Functions .. |
96 |
LOGICAL LSAME |
97 |
EXTERNAL LSAME |
98 |
* .. |
99 |
* .. External Subroutines .. |
100 |
EXTERNAL XERBLA |
101 |
* .. |
102 |
* .. Intrinsic Functions .. |
103 |
INTRINSIC DBLE,DCONJG |
104 |
* .. |
105 |
* |
106 |
* Test the input parameters. |
107 |
* |
108 |
INFO = 0 |
109 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
110 |
INFO = 1 |
111 |
ELSE IF (N.LT.0) THEN |
112 |
INFO = 2 |
113 |
ELSE IF (INCX.EQ.0) THEN |
114 |
INFO = 5 |
115 |
END IF |
116 |
IF (INFO.NE.0) THEN |
117 |
CALL XERBLA('ZHPR ',INFO) |
118 |
RETURN |
119 |
END IF |
120 |
* |
121 |
* Quick return if possible. |
122 |
* |
123 |
IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN |
124 |
* |
125 |
* Set the start point in X if the increment is not unity. |
126 |
* |
127 |
IF (INCX.LE.0) THEN |
128 |
KX = 1 - (N-1)*INCX |
129 |
ELSE IF (INCX.NE.1) THEN |
130 |
KX = 1 |
131 |
END IF |
132 |
* |
133 |
* Start the operations. In this version the elements of the array AP |
134 |
* are accessed sequentially with one pass through AP. |
135 |
* |
136 |
KK = 1 |
137 |
IF (LSAME(UPLO,'U')) THEN |
138 |
* |
139 |
* Form A when upper triangle is stored in AP. |
140 |
* |
141 |
IF (INCX.EQ.1) THEN |
142 |
DO 20 J = 1,N |
143 |
IF (X(J).NE.ZERO) THEN |
144 |
TEMP = ALPHA*DCONJG(X(J)) |
145 |
K = KK |
146 |
DO 10 I = 1,J - 1 |
147 |
AP(K) = AP(K) + X(I)*TEMP |
148 |
K = K + 1 |
149 |
10 CONTINUE |
150 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP) |
151 |
ELSE |
152 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) |
153 |
END IF |
154 |
KK = KK + J |
155 |
20 CONTINUE |
156 |
ELSE |
157 |
JX = KX |
158 |
DO 40 J = 1,N |
159 |
IF (X(JX).NE.ZERO) THEN |
160 |
TEMP = ALPHA*DCONJG(X(JX)) |
161 |
IX = KX |
162 |
DO 30 K = KK,KK + J - 2 |
163 |
AP(K) = AP(K) + X(IX)*TEMP |
164 |
IX = IX + INCX |
165 |
30 CONTINUE |
166 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP) |
167 |
ELSE |
168 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) |
169 |
END IF |
170 |
JX = JX + INCX |
171 |
KK = KK + J |
172 |
40 CONTINUE |
173 |
END IF |
174 |
ELSE |
175 |
* |
176 |
* Form A when lower triangle is stored in AP. |
177 |
* |
178 |
IF (INCX.EQ.1) THEN |
179 |
DO 60 J = 1,N |
180 |
IF (X(J).NE.ZERO) THEN |
181 |
TEMP = ALPHA*DCONJG(X(J)) |
182 |
AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J)) |
183 |
K = KK + 1 |
184 |
DO 50 I = J + 1,N |
185 |
AP(K) = AP(K) + X(I)*TEMP |
186 |
K = K + 1 |
187 |
50 CONTINUE |
188 |
ELSE |
189 |
AP(KK) = DBLE(AP(KK)) |
190 |
END IF |
191 |
KK = KK + N - J + 1 |
192 |
60 CONTINUE |
193 |
ELSE |
194 |
JX = KX |
195 |
DO 80 J = 1,N |
196 |
IF (X(JX).NE.ZERO) THEN |
197 |
TEMP = ALPHA*DCONJG(X(JX)) |
198 |
AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX)) |
199 |
IX = JX |
200 |
DO 70 K = KK + 1,KK + N - J |
201 |
IX = IX + INCX |
202 |
AP(K) = AP(K) + X(IX)*TEMP |
203 |
70 CONTINUE |
204 |
ELSE |
205 |
AP(KK) = DBLE(AP(KK)) |
206 |
END IF |
207 |
JX = JX + INCX |
208 |
KK = KK + N - J + 1 |
209 |
80 CONTINUE |
210 |
END IF |
211 |
END IF |
212 |
* |
213 |
RETURN |
214 |
* |
215 |
* End of ZHPR . |
216 |
* |
217 |
END |