Statistiques
| Révision :

root / src / blas / zhpr.f @ 11

Historique | Voir | Annoter | Télécharger (6,62 ko)

1
      SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA
4
      INTEGER INCX,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE COMPLEX AP(*),X(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  ZHPR    performs the hermitian rank 1 operation
15
*
16
*     A := alpha*x*conjg( x' ) + A,
17
*
18
*  where alpha is a real scalar, x is an n element vector and A is an
19
*  n by n hermitian matrix, supplied in packed form.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the matrix A is supplied in the packed
27
*           array AP as follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  supplied in AP.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  supplied in AP.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - DOUBLE PRECISION.
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  X      - COMPLEX*16       array of dimension at least
47
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48
*           Before entry, the incremented array X must contain the n
49
*           element vector x.
50
*           Unchanged on exit.
51
*
52
*  INCX   - INTEGER.
53
*           On entry, INCX specifies the increment for the elements of
54
*           X. INCX must not be zero.
55
*           Unchanged on exit.
56
*
57
*  AP     - COMPLEX*16       array of DIMENSION at least
58
*           ( ( n*( n + 1 ) )/2 ).
59
*           Before entry with  UPLO = 'U' or 'u', the array AP must
60
*           contain the upper triangular part of the hermitian matrix
61
*           packed sequentially, column by column, so that AP( 1 )
62
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
63
*           and a( 2, 2 ) respectively, and so on. On exit, the array
64
*           AP is overwritten by the upper triangular part of the
65
*           updated matrix.
66
*           Before entry with UPLO = 'L' or 'l', the array AP must
67
*           contain the lower triangular part of the hermitian matrix
68
*           packed sequentially, column by column, so that AP( 1 )
69
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
70
*           and a( 3, 1 ) respectively, and so on. On exit, the array
71
*           AP is overwritten by the lower triangular part of the
72
*           updated matrix.
73
*           Note that the imaginary parts of the diagonal elements need
74
*           not be set, they are assumed to be zero, and on exit they
75
*           are set to zero.
76
*
77
*
78
*  Level 2 Blas routine.
79
*
80
*  -- Written on 22-October-1986.
81
*     Jack Dongarra, Argonne National Lab.
82
*     Jeremy Du Croz, Nag Central Office.
83
*     Sven Hammarling, Nag Central Office.
84
*     Richard Hanson, Sandia National Labs.
85
*
86
*
87
*     .. Parameters ..
88
      DOUBLE COMPLEX ZERO
89
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
90
*     ..
91
*     .. Local Scalars ..
92
      DOUBLE COMPLEX TEMP
93
      INTEGER I,INFO,IX,J,JX,K,KK,KX
94
*     ..
95
*     .. External Functions ..
96
      LOGICAL LSAME
97
      EXTERNAL LSAME
98
*     ..
99
*     .. External Subroutines ..
100
      EXTERNAL XERBLA
101
*     ..
102
*     .. Intrinsic Functions ..
103
      INTRINSIC DBLE,DCONJG
104
*     ..
105
*
106
*     Test the input parameters.
107
*
108
      INFO = 0
109
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
110
          INFO = 1
111
      ELSE IF (N.LT.0) THEN
112
          INFO = 2
113
      ELSE IF (INCX.EQ.0) THEN
114
          INFO = 5
115
      END IF
116
      IF (INFO.NE.0) THEN
117
          CALL XERBLA('ZHPR  ',INFO)
118
          RETURN
119
      END IF
120
*
121
*     Quick return if possible.
122
*
123
      IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
124
*
125
*     Set the start point in X if the increment is not unity.
126
*
127
      IF (INCX.LE.0) THEN
128
          KX = 1 - (N-1)*INCX
129
      ELSE IF (INCX.NE.1) THEN
130
          KX = 1
131
      END IF
132
*
133
*     Start the operations. In this version the elements of the array AP
134
*     are accessed sequentially with one pass through AP.
135
*
136
      KK = 1
137
      IF (LSAME(UPLO,'U')) THEN
138
*
139
*        Form  A  when upper triangle is stored in AP.
140
*
141
          IF (INCX.EQ.1) THEN
142
              DO 20 J = 1,N
143
                  IF (X(J).NE.ZERO) THEN
144
                      TEMP = ALPHA*DCONJG(X(J))
145
                      K = KK
146
                      DO 10 I = 1,J - 1
147
                          AP(K) = AP(K) + X(I)*TEMP
148
                          K = K + 1
149
   10                 CONTINUE
150
                      AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP)
151
                  ELSE
152
                      AP(KK+J-1) = DBLE(AP(KK+J-1))
153
                  END IF
154
                  KK = KK + J
155
   20         CONTINUE
156
          ELSE
157
              JX = KX
158
              DO 40 J = 1,N
159
                  IF (X(JX).NE.ZERO) THEN
160
                      TEMP = ALPHA*DCONJG(X(JX))
161
                      IX = KX
162
                      DO 30 K = KK,KK + J - 2
163
                          AP(K) = AP(K) + X(IX)*TEMP
164
                          IX = IX + INCX
165
   30                 CONTINUE
166
                      AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP)
167
                  ELSE
168
                      AP(KK+J-1) = DBLE(AP(KK+J-1))
169
                  END IF
170
                  JX = JX + INCX
171
                  KK = KK + J
172
   40         CONTINUE
173
          END IF
174
      ELSE
175
*
176
*        Form  A  when lower triangle is stored in AP.
177
*
178
          IF (INCX.EQ.1) THEN
179
              DO 60 J = 1,N
180
                  IF (X(J).NE.ZERO) THEN
181
                      TEMP = ALPHA*DCONJG(X(J))
182
                      AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J))
183
                      K = KK + 1
184
                      DO 50 I = J + 1,N
185
                          AP(K) = AP(K) + X(I)*TEMP
186
                          K = K + 1
187
   50                 CONTINUE
188
                  ELSE
189
                      AP(KK) = DBLE(AP(KK))
190
                  END IF
191
                  KK = KK + N - J + 1
192
   60         CONTINUE
193
          ELSE
194
              JX = KX
195
              DO 80 J = 1,N
196
                  IF (X(JX).NE.ZERO) THEN
197
                      TEMP = ALPHA*DCONJG(X(JX))
198
                      AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX))
199
                      IX = JX
200
                      DO 70 K = KK + 1,KK + N - J
201
                          IX = IX + INCX
202
                          AP(K) = AP(K) + X(IX)*TEMP
203
   70                 CONTINUE
204
                  ELSE
205
                      AP(KK) = DBLE(AP(KK))
206
                  END IF
207
                  JX = JX + INCX
208
                  KK = KK + N - J + 1
209
   80         CONTINUE
210
          END IF
211
      END IF
212
*
213
      RETURN
214
*
215
*     End of ZHPR  .
216
*
217
      END