root / src / blas / stbmv.f @ 11
Historique | Voir | Annoter | Télécharger (10,71 ko)
1 |
SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,K,LDA,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
REAL A(LDA,*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* STBMV performs one of the matrix-vector operations |
14 |
* |
15 |
* x := A*x, or x := A'*x, |
16 |
* |
17 |
* where x is an n element vector and A is an n by n unit, or non-unit, |
18 |
* upper or lower triangular band matrix, with ( k + 1 ) diagonals. |
19 |
* |
20 |
* Arguments |
21 |
* ========== |
22 |
* |
23 |
* UPLO - CHARACTER*1. |
24 |
* On entry, UPLO specifies whether the matrix is an upper or |
25 |
* lower triangular matrix as follows: |
26 |
* |
27 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
28 |
* |
29 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
30 |
* |
31 |
* Unchanged on exit. |
32 |
* |
33 |
* TRANS - CHARACTER*1. |
34 |
* On entry, TRANS specifies the operation to be performed as |
35 |
* follows: |
36 |
* |
37 |
* TRANS = 'N' or 'n' x := A*x. |
38 |
* |
39 |
* TRANS = 'T' or 't' x := A'*x. |
40 |
* |
41 |
* TRANS = 'C' or 'c' x := A'*x. |
42 |
* |
43 |
* Unchanged on exit. |
44 |
* |
45 |
* DIAG - CHARACTER*1. |
46 |
* On entry, DIAG specifies whether or not A is unit |
47 |
* triangular as follows: |
48 |
* |
49 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
50 |
* |
51 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
52 |
* triangular. |
53 |
* |
54 |
* Unchanged on exit. |
55 |
* |
56 |
* N - INTEGER. |
57 |
* On entry, N specifies the order of the matrix A. |
58 |
* N must be at least zero. |
59 |
* Unchanged on exit. |
60 |
* |
61 |
* K - INTEGER. |
62 |
* On entry with UPLO = 'U' or 'u', K specifies the number of |
63 |
* super-diagonals of the matrix A. |
64 |
* On entry with UPLO = 'L' or 'l', K specifies the number of |
65 |
* sub-diagonals of the matrix A. |
66 |
* K must satisfy 0 .le. K. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* A - REAL array of DIMENSION ( LDA, n ). |
70 |
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
71 |
* by n part of the array A must contain the upper triangular |
72 |
* band part of the matrix of coefficients, supplied column by |
73 |
* column, with the leading diagonal of the matrix in row |
74 |
* ( k + 1 ) of the array, the first super-diagonal starting at |
75 |
* position 2 in row k, and so on. The top left k by k triangle |
76 |
* of the array A is not referenced. |
77 |
* The following program segment will transfer an upper |
78 |
* triangular band matrix from conventional full matrix storage |
79 |
* to band storage: |
80 |
* |
81 |
* DO 20, J = 1, N |
82 |
* M = K + 1 - J |
83 |
* DO 10, I = MAX( 1, J - K ), J |
84 |
* A( M + I, J ) = matrix( I, J ) |
85 |
* 10 CONTINUE |
86 |
* 20 CONTINUE |
87 |
* |
88 |
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
89 |
* by n part of the array A must contain the lower triangular |
90 |
* band part of the matrix of coefficients, supplied column by |
91 |
* column, with the leading diagonal of the matrix in row 1 of |
92 |
* the array, the first sub-diagonal starting at position 1 in |
93 |
* row 2, and so on. The bottom right k by k triangle of the |
94 |
* array A is not referenced. |
95 |
* The following program segment will transfer a lower |
96 |
* triangular band matrix from conventional full matrix storage |
97 |
* to band storage: |
98 |
* |
99 |
* DO 20, J = 1, N |
100 |
* M = 1 - J |
101 |
* DO 10, I = J, MIN( N, J + K ) |
102 |
* A( M + I, J ) = matrix( I, J ) |
103 |
* 10 CONTINUE |
104 |
* 20 CONTINUE |
105 |
* |
106 |
* Note that when DIAG = 'U' or 'u' the elements of the array A |
107 |
* corresponding to the diagonal elements of the matrix are not |
108 |
* referenced, but are assumed to be unity. |
109 |
* Unchanged on exit. |
110 |
* |
111 |
* LDA - INTEGER. |
112 |
* On entry, LDA specifies the first dimension of A as declared |
113 |
* in the calling (sub) program. LDA must be at least |
114 |
* ( k + 1 ). |
115 |
* Unchanged on exit. |
116 |
* |
117 |
* X - REAL array of dimension at least |
118 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
119 |
* Before entry, the incremented array X must contain the n |
120 |
* element vector x. On exit, X is overwritten with the |
121 |
* tranformed vector x. |
122 |
* |
123 |
* INCX - INTEGER. |
124 |
* On entry, INCX specifies the increment for the elements of |
125 |
* X. INCX must not be zero. |
126 |
* Unchanged on exit. |
127 |
* |
128 |
* |
129 |
* Level 2 Blas routine. |
130 |
* |
131 |
* -- Written on 22-October-1986. |
132 |
* Jack Dongarra, Argonne National Lab. |
133 |
* Jeremy Du Croz, Nag Central Office. |
134 |
* Sven Hammarling, Nag Central Office. |
135 |
* Richard Hanson, Sandia National Labs. |
136 |
* |
137 |
* |
138 |
* .. Parameters .. |
139 |
REAL ZERO |
140 |
PARAMETER (ZERO=0.0E+0) |
141 |
* .. |
142 |
* .. Local Scalars .. |
143 |
REAL TEMP |
144 |
INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L |
145 |
LOGICAL NOUNIT |
146 |
* .. |
147 |
* .. External Functions .. |
148 |
LOGICAL LSAME |
149 |
EXTERNAL LSAME |
150 |
* .. |
151 |
* .. External Subroutines .. |
152 |
EXTERNAL XERBLA |
153 |
* .. |
154 |
* .. Intrinsic Functions .. |
155 |
INTRINSIC MAX,MIN |
156 |
* .. |
157 |
* |
158 |
* Test the input parameters. |
159 |
* |
160 |
INFO = 0 |
161 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
162 |
INFO = 1 |
163 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
164 |
+ .NOT.LSAME(TRANS,'C')) THEN |
165 |
INFO = 2 |
166 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
167 |
INFO = 3 |
168 |
ELSE IF (N.LT.0) THEN |
169 |
INFO = 4 |
170 |
ELSE IF (K.LT.0) THEN |
171 |
INFO = 5 |
172 |
ELSE IF (LDA.LT. (K+1)) THEN |
173 |
INFO = 7 |
174 |
ELSE IF (INCX.EQ.0) THEN |
175 |
INFO = 9 |
176 |
END IF |
177 |
IF (INFO.NE.0) THEN |
178 |
CALL XERBLA('STBMV ',INFO) |
179 |
RETURN |
180 |
END IF |
181 |
* |
182 |
* Quick return if possible. |
183 |
* |
184 |
IF (N.EQ.0) RETURN |
185 |
* |
186 |
NOUNIT = LSAME(DIAG,'N') |
187 |
* |
188 |
* Set up the start point in X if the increment is not unity. This |
189 |
* will be ( N - 1 )*INCX too small for descending loops. |
190 |
* |
191 |
IF (INCX.LE.0) THEN |
192 |
KX = 1 - (N-1)*INCX |
193 |
ELSE IF (INCX.NE.1) THEN |
194 |
KX = 1 |
195 |
END IF |
196 |
* |
197 |
* Start the operations. In this version the elements of A are |
198 |
* accessed sequentially with one pass through A. |
199 |
* |
200 |
IF (LSAME(TRANS,'N')) THEN |
201 |
* |
202 |
* Form x := A*x. |
203 |
* |
204 |
IF (LSAME(UPLO,'U')) THEN |
205 |
KPLUS1 = K + 1 |
206 |
IF (INCX.EQ.1) THEN |
207 |
DO 20 J = 1,N |
208 |
IF (X(J).NE.ZERO) THEN |
209 |
TEMP = X(J) |
210 |
L = KPLUS1 - J |
211 |
DO 10 I = MAX(1,J-K),J - 1 |
212 |
X(I) = X(I) + TEMP*A(L+I,J) |
213 |
10 CONTINUE |
214 |
IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) |
215 |
END IF |
216 |
20 CONTINUE |
217 |
ELSE |
218 |
JX = KX |
219 |
DO 40 J = 1,N |
220 |
IF (X(JX).NE.ZERO) THEN |
221 |
TEMP = X(JX) |
222 |
IX = KX |
223 |
L = KPLUS1 - J |
224 |
DO 30 I = MAX(1,J-K),J - 1 |
225 |
X(IX) = X(IX) + TEMP*A(L+I,J) |
226 |
IX = IX + INCX |
227 |
30 CONTINUE |
228 |
IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) |
229 |
END IF |
230 |
JX = JX + INCX |
231 |
IF (J.GT.K) KX = KX + INCX |
232 |
40 CONTINUE |
233 |
END IF |
234 |
ELSE |
235 |
IF (INCX.EQ.1) THEN |
236 |
DO 60 J = N,1,-1 |
237 |
IF (X(J).NE.ZERO) THEN |
238 |
TEMP = X(J) |
239 |
L = 1 - J |
240 |
DO 50 I = MIN(N,J+K),J + 1,-1 |
241 |
X(I) = X(I) + TEMP*A(L+I,J) |
242 |
50 CONTINUE |
243 |
IF (NOUNIT) X(J) = X(J)*A(1,J) |
244 |
END IF |
245 |
60 CONTINUE |
246 |
ELSE |
247 |
KX = KX + (N-1)*INCX |
248 |
JX = KX |
249 |
DO 80 J = N,1,-1 |
250 |
IF (X(JX).NE.ZERO) THEN |
251 |
TEMP = X(JX) |
252 |
IX = KX |
253 |
L = 1 - J |
254 |
DO 70 I = MIN(N,J+K),J + 1,-1 |
255 |
X(IX) = X(IX) + TEMP*A(L+I,J) |
256 |
IX = IX - INCX |
257 |
70 CONTINUE |
258 |
IF (NOUNIT) X(JX) = X(JX)*A(1,J) |
259 |
END IF |
260 |
JX = JX - INCX |
261 |
IF ((N-J).GE.K) KX = KX - INCX |
262 |
80 CONTINUE |
263 |
END IF |
264 |
END IF |
265 |
ELSE |
266 |
* |
267 |
* Form x := A'*x. |
268 |
* |
269 |
IF (LSAME(UPLO,'U')) THEN |
270 |
KPLUS1 = K + 1 |
271 |
IF (INCX.EQ.1) THEN |
272 |
DO 100 J = N,1,-1 |
273 |
TEMP = X(J) |
274 |
L = KPLUS1 - J |
275 |
IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) |
276 |
DO 90 I = J - 1,MAX(1,J-K),-1 |
277 |
TEMP = TEMP + A(L+I,J)*X(I) |
278 |
90 CONTINUE |
279 |
X(J) = TEMP |
280 |
100 CONTINUE |
281 |
ELSE |
282 |
KX = KX + (N-1)*INCX |
283 |
JX = KX |
284 |
DO 120 J = N,1,-1 |
285 |
TEMP = X(JX) |
286 |
KX = KX - INCX |
287 |
IX = KX |
288 |
L = KPLUS1 - J |
289 |
IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) |
290 |
DO 110 I = J - 1,MAX(1,J-K),-1 |
291 |
TEMP = TEMP + A(L+I,J)*X(IX) |
292 |
IX = IX - INCX |
293 |
110 CONTINUE |
294 |
X(JX) = TEMP |
295 |
JX = JX - INCX |
296 |
120 CONTINUE |
297 |
END IF |
298 |
ELSE |
299 |
IF (INCX.EQ.1) THEN |
300 |
DO 140 J = 1,N |
301 |
TEMP = X(J) |
302 |
L = 1 - J |
303 |
IF (NOUNIT) TEMP = TEMP*A(1,J) |
304 |
DO 130 I = J + 1,MIN(N,J+K) |
305 |
TEMP = TEMP + A(L+I,J)*X(I) |
306 |
130 CONTINUE |
307 |
X(J) = TEMP |
308 |
140 CONTINUE |
309 |
ELSE |
310 |
JX = KX |
311 |
DO 160 J = 1,N |
312 |
TEMP = X(JX) |
313 |
KX = KX + INCX |
314 |
IX = KX |
315 |
L = 1 - J |
316 |
IF (NOUNIT) TEMP = TEMP*A(1,J) |
317 |
DO 150 I = J + 1,MIN(N,J+K) |
318 |
TEMP = TEMP + A(L+I,J)*X(IX) |
319 |
IX = IX + INCX |
320 |
150 CONTINUE |
321 |
X(JX) = TEMP |
322 |
JX = JX + INCX |
323 |
160 CONTINUE |
324 |
END IF |
325 |
END IF |
326 |
END IF |
327 |
* |
328 |
RETURN |
329 |
* |
330 |
* End of STBMV . |
331 |
* |
332 |
END |