root / src / blas / ssyr2k.f @ 11
Historique | Voir | Annoter | Télécharger (10,57 ko)
1 |
SUBROUTINE SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
REAL ALPHA,BETA |
4 |
INTEGER K,LDA,LDB,LDC,N |
5 |
CHARACTER TRANS,UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
REAL A(LDA,*),B(LDB,*),C(LDC,*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* SSYR2K performs one of the symmetric rank 2k operations |
15 |
* |
16 |
* C := alpha*A*B' + alpha*B*A' + beta*C, |
17 |
* |
18 |
* or |
19 |
* |
20 |
* C := alpha*A'*B + alpha*B'*A + beta*C, |
21 |
* |
22 |
* where alpha and beta are scalars, C is an n by n symmetric matrix |
23 |
* and A and B are n by k matrices in the first case and k by n |
24 |
* matrices in the second case. |
25 |
* |
26 |
* Arguments |
27 |
* ========== |
28 |
* |
29 |
* UPLO - CHARACTER*1. |
30 |
* On entry, UPLO specifies whether the upper or lower |
31 |
* triangular part of the array C is to be referenced as |
32 |
* follows: |
33 |
* |
34 |
* UPLO = 'U' or 'u' Only the upper triangular part of C |
35 |
* is to be referenced. |
36 |
* |
37 |
* UPLO = 'L' or 'l' Only the lower triangular part of C |
38 |
* is to be referenced. |
39 |
* |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* TRANS - CHARACTER*1. |
43 |
* On entry, TRANS specifies the operation to be performed as |
44 |
* follows: |
45 |
* |
46 |
* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + |
47 |
* beta*C. |
48 |
* |
49 |
* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + |
50 |
* beta*C. |
51 |
* |
52 |
* TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + |
53 |
* beta*C. |
54 |
* |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* N - INTEGER. |
58 |
* On entry, N specifies the order of the matrix C. N must be |
59 |
* at least zero. |
60 |
* Unchanged on exit. |
61 |
* |
62 |
* K - INTEGER. |
63 |
* On entry with TRANS = 'N' or 'n', K specifies the number |
64 |
* of columns of the matrices A and B, and on entry with |
65 |
* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number |
66 |
* of rows of the matrices A and B. K must be at least zero. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* ALPHA - REAL . |
70 |
* On entry, ALPHA specifies the scalar alpha. |
71 |
* Unchanged on exit. |
72 |
* |
73 |
* A - REAL array of DIMENSION ( LDA, ka ), where ka is |
74 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
75 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
76 |
* part of the array A must contain the matrix A, otherwise |
77 |
* the leading k by n part of the array A must contain the |
78 |
* matrix A. |
79 |
* Unchanged on exit. |
80 |
* |
81 |
* LDA - INTEGER. |
82 |
* On entry, LDA specifies the first dimension of A as declared |
83 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
84 |
* then LDA must be at least max( 1, n ), otherwise LDA must |
85 |
* be at least max( 1, k ). |
86 |
* Unchanged on exit. |
87 |
* |
88 |
* B - REAL array of DIMENSION ( LDB, kb ), where kb is |
89 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
90 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
91 |
* part of the array B must contain the matrix B, otherwise |
92 |
* the leading k by n part of the array B must contain the |
93 |
* matrix B. |
94 |
* Unchanged on exit. |
95 |
* |
96 |
* LDB - INTEGER. |
97 |
* On entry, LDB specifies the first dimension of B as declared |
98 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
99 |
* then LDB must be at least max( 1, n ), otherwise LDB must |
100 |
* be at least max( 1, k ). |
101 |
* Unchanged on exit. |
102 |
* |
103 |
* BETA - REAL . |
104 |
* On entry, BETA specifies the scalar beta. |
105 |
* Unchanged on exit. |
106 |
* |
107 |
* C - REAL array of DIMENSION ( LDC, n ). |
108 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
109 |
* upper triangular part of the array C must contain the upper |
110 |
* triangular part of the symmetric matrix and the strictly |
111 |
* lower triangular part of C is not referenced. On exit, the |
112 |
* upper triangular part of the array C is overwritten by the |
113 |
* upper triangular part of the updated matrix. |
114 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
115 |
* lower triangular part of the array C must contain the lower |
116 |
* triangular part of the symmetric matrix and the strictly |
117 |
* upper triangular part of C is not referenced. On exit, the |
118 |
* lower triangular part of the array C is overwritten by the |
119 |
* lower triangular part of the updated matrix. |
120 |
* |
121 |
* LDC - INTEGER. |
122 |
* On entry, LDC specifies the first dimension of C as declared |
123 |
* in the calling (sub) program. LDC must be at least |
124 |
* max( 1, n ). |
125 |
* Unchanged on exit. |
126 |
* |
127 |
* |
128 |
* Level 3 Blas routine. |
129 |
* |
130 |
* |
131 |
* -- Written on 8-February-1989. |
132 |
* Jack Dongarra, Argonne National Laboratory. |
133 |
* Iain Duff, AERE Harwell. |
134 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
135 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
136 |
* |
137 |
* |
138 |
* .. External Functions .. |
139 |
LOGICAL LSAME |
140 |
EXTERNAL LSAME |
141 |
* .. |
142 |
* .. External Subroutines .. |
143 |
EXTERNAL XERBLA |
144 |
* .. |
145 |
* .. Intrinsic Functions .. |
146 |
INTRINSIC MAX |
147 |
* .. |
148 |
* .. Local Scalars .. |
149 |
REAL TEMP1,TEMP2 |
150 |
INTEGER I,INFO,J,L,NROWA |
151 |
LOGICAL UPPER |
152 |
* .. |
153 |
* .. Parameters .. |
154 |
REAL ONE,ZERO |
155 |
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
156 |
* .. |
157 |
* |
158 |
* Test the input parameters. |
159 |
* |
160 |
IF (LSAME(TRANS,'N')) THEN |
161 |
NROWA = N |
162 |
ELSE |
163 |
NROWA = K |
164 |
END IF |
165 |
UPPER = LSAME(UPLO,'U') |
166 |
* |
167 |
INFO = 0 |
168 |
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
169 |
INFO = 1 |
170 |
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
171 |
+ (.NOT.LSAME(TRANS,'T')) .AND. |
172 |
+ (.NOT.LSAME(TRANS,'C'))) THEN |
173 |
INFO = 2 |
174 |
ELSE IF (N.LT.0) THEN |
175 |
INFO = 3 |
176 |
ELSE IF (K.LT.0) THEN |
177 |
INFO = 4 |
178 |
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
179 |
INFO = 7 |
180 |
ELSE IF (LDB.LT.MAX(1,NROWA)) THEN |
181 |
INFO = 9 |
182 |
ELSE IF (LDC.LT.MAX(1,N)) THEN |
183 |
INFO = 12 |
184 |
END IF |
185 |
IF (INFO.NE.0) THEN |
186 |
CALL XERBLA('SSYR2K',INFO) |
187 |
RETURN |
188 |
END IF |
189 |
* |
190 |
* Quick return if possible. |
191 |
* |
192 |
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
193 |
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
194 |
* |
195 |
* And when alpha.eq.zero. |
196 |
* |
197 |
IF (ALPHA.EQ.ZERO) THEN |
198 |
IF (UPPER) THEN |
199 |
IF (BETA.EQ.ZERO) THEN |
200 |
DO 20 J = 1,N |
201 |
DO 10 I = 1,J |
202 |
C(I,J) = ZERO |
203 |
10 CONTINUE |
204 |
20 CONTINUE |
205 |
ELSE |
206 |
DO 40 J = 1,N |
207 |
DO 30 I = 1,J |
208 |
C(I,J) = BETA*C(I,J) |
209 |
30 CONTINUE |
210 |
40 CONTINUE |
211 |
END IF |
212 |
ELSE |
213 |
IF (BETA.EQ.ZERO) THEN |
214 |
DO 60 J = 1,N |
215 |
DO 50 I = J,N |
216 |
C(I,J) = ZERO |
217 |
50 CONTINUE |
218 |
60 CONTINUE |
219 |
ELSE |
220 |
DO 80 J = 1,N |
221 |
DO 70 I = J,N |
222 |
C(I,J) = BETA*C(I,J) |
223 |
70 CONTINUE |
224 |
80 CONTINUE |
225 |
END IF |
226 |
END IF |
227 |
RETURN |
228 |
END IF |
229 |
* |
230 |
* Start the operations. |
231 |
* |
232 |
IF (LSAME(TRANS,'N')) THEN |
233 |
* |
234 |
* Form C := alpha*A*B' + alpha*B*A' + C. |
235 |
* |
236 |
IF (UPPER) THEN |
237 |
DO 130 J = 1,N |
238 |
IF (BETA.EQ.ZERO) THEN |
239 |
DO 90 I = 1,J |
240 |
C(I,J) = ZERO |
241 |
90 CONTINUE |
242 |
ELSE IF (BETA.NE.ONE) THEN |
243 |
DO 100 I = 1,J |
244 |
C(I,J) = BETA*C(I,J) |
245 |
100 CONTINUE |
246 |
END IF |
247 |
DO 120 L = 1,K |
248 |
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
249 |
TEMP1 = ALPHA*B(J,L) |
250 |
TEMP2 = ALPHA*A(J,L) |
251 |
DO 110 I = 1,J |
252 |
C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
253 |
+ B(I,L)*TEMP2 |
254 |
110 CONTINUE |
255 |
END IF |
256 |
120 CONTINUE |
257 |
130 CONTINUE |
258 |
ELSE |
259 |
DO 180 J = 1,N |
260 |
IF (BETA.EQ.ZERO) THEN |
261 |
DO 140 I = J,N |
262 |
C(I,J) = ZERO |
263 |
140 CONTINUE |
264 |
ELSE IF (BETA.NE.ONE) THEN |
265 |
DO 150 I = J,N |
266 |
C(I,J) = BETA*C(I,J) |
267 |
150 CONTINUE |
268 |
END IF |
269 |
DO 170 L = 1,K |
270 |
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
271 |
TEMP1 = ALPHA*B(J,L) |
272 |
TEMP2 = ALPHA*A(J,L) |
273 |
DO 160 I = J,N |
274 |
C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
275 |
+ B(I,L)*TEMP2 |
276 |
160 CONTINUE |
277 |
END IF |
278 |
170 CONTINUE |
279 |
180 CONTINUE |
280 |
END IF |
281 |
ELSE |
282 |
* |
283 |
* Form C := alpha*A'*B + alpha*B'*A + C. |
284 |
* |
285 |
IF (UPPER) THEN |
286 |
DO 210 J = 1,N |
287 |
DO 200 I = 1,J |
288 |
TEMP1 = ZERO |
289 |
TEMP2 = ZERO |
290 |
DO 190 L = 1,K |
291 |
TEMP1 = TEMP1 + A(L,I)*B(L,J) |
292 |
TEMP2 = TEMP2 + B(L,I)*A(L,J) |
293 |
190 CONTINUE |
294 |
IF (BETA.EQ.ZERO) THEN |
295 |
C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 |
296 |
ELSE |
297 |
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
298 |
+ ALPHA*TEMP2 |
299 |
END IF |
300 |
200 CONTINUE |
301 |
210 CONTINUE |
302 |
ELSE |
303 |
DO 240 J = 1,N |
304 |
DO 230 I = J,N |
305 |
TEMP1 = ZERO |
306 |
TEMP2 = ZERO |
307 |
DO 220 L = 1,K |
308 |
TEMP1 = TEMP1 + A(L,I)*B(L,J) |
309 |
TEMP2 = TEMP2 + B(L,I)*A(L,J) |
310 |
220 CONTINUE |
311 |
IF (BETA.EQ.ZERO) THEN |
312 |
C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 |
313 |
ELSE |
314 |
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
315 |
+ ALPHA*TEMP2 |
316 |
END IF |
317 |
230 CONTINUE |
318 |
240 CONTINUE |
319 |
END IF |
320 |
END IF |
321 |
* |
322 |
RETURN |
323 |
* |
324 |
* End of SSYR2K. |
325 |
* |
326 |
END |