Statistiques
| Révision :

root / src / blas / chbmv.f @ 11

Historique | Voir | Annoter | Télécharger (9,49 ko)

1
      SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      COMPLEX ALPHA,BETA
4
      INTEGER INCX,INCY,K,LDA,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      COMPLEX A(LDA,*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  CHBMV  performs the matrix-vector  operation
15
*
16
*     y := alpha*A*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are n element vectors and
19
*  A is an n by n hermitian band matrix, with k super-diagonals.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the band matrix A is being supplied as
27
*           follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  being supplied.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  being supplied.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  K      - INTEGER.
43
*           On entry, K specifies the number of super-diagonals of the
44
*           matrix A. K must satisfy  0 .le. K.
45
*           Unchanged on exit.
46
*
47
*  ALPHA  - COMPLEX         .
48
*           On entry, ALPHA specifies the scalar alpha.
49
*           Unchanged on exit.
50
*
51
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
52
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53
*           by n part of the array A must contain the upper triangular
54
*           band part of the hermitian matrix, supplied column by
55
*           column, with the leading diagonal of the matrix in row
56
*           ( k + 1 ) of the array, the first super-diagonal starting at
57
*           position 2 in row k, and so on. The top left k by k triangle
58
*           of the array A is not referenced.
59
*           The following program segment will transfer the upper
60
*           triangular part of a hermitian band matrix from conventional
61
*           full matrix storage to band storage:
62
*
63
*                 DO 20, J = 1, N
64
*                    M = K + 1 - J
65
*                    DO 10, I = MAX( 1, J - K ), J
66
*                       A( M + I, J ) = matrix( I, J )
67
*              10    CONTINUE
68
*              20 CONTINUE
69
*
70
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71
*           by n part of the array A must contain the lower triangular
72
*           band part of the hermitian matrix, supplied column by
73
*           column, with the leading diagonal of the matrix in row 1 of
74
*           the array, the first sub-diagonal starting at position 1 in
75
*           row 2, and so on. The bottom right k by k triangle of the
76
*           array A is not referenced.
77
*           The following program segment will transfer the lower
78
*           triangular part of a hermitian band matrix from conventional
79
*           full matrix storage to band storage:
80
*
81
*                 DO 20, J = 1, N
82
*                    M = 1 - J
83
*                    DO 10, I = J, MIN( N, J + K )
84
*                       A( M + I, J ) = matrix( I, J )
85
*              10    CONTINUE
86
*              20 CONTINUE
87
*
88
*           Note that the imaginary parts of the diagonal elements need
89
*           not be set and are assumed to be zero.
90
*           Unchanged on exit.
91
*
92
*  LDA    - INTEGER.
93
*           On entry, LDA specifies the first dimension of A as declared
94
*           in the calling (sub) program. LDA must be at least
95
*           ( k + 1 ).
96
*           Unchanged on exit.
97
*
98
*  X      - COMPLEX          array of DIMENSION at least
99
*           ( 1 + ( n - 1 )*abs( INCX ) ).
100
*           Before entry, the incremented array X must contain the
101
*           vector x.
102
*           Unchanged on exit.
103
*
104
*  INCX   - INTEGER.
105
*           On entry, INCX specifies the increment for the elements of
106
*           X. INCX must not be zero.
107
*           Unchanged on exit.
108
*
109
*  BETA   - COMPLEX         .
110
*           On entry, BETA specifies the scalar beta.
111
*           Unchanged on exit.
112
*
113
*  Y      - COMPLEX          array of DIMENSION at least
114
*           ( 1 + ( n - 1 )*abs( INCY ) ).
115
*           Before entry, the incremented array Y must contain the
116
*           vector y. On exit, Y is overwritten by the updated vector y.
117
*
118
*  INCY   - INTEGER.
119
*           On entry, INCY specifies the increment for the elements of
120
*           Y. INCY must not be zero.
121
*           Unchanged on exit.
122
*
123
*
124
*  Level 2 Blas routine.
125
*
126
*  -- Written on 22-October-1986.
127
*     Jack Dongarra, Argonne National Lab.
128
*     Jeremy Du Croz, Nag Central Office.
129
*     Sven Hammarling, Nag Central Office.
130
*     Richard Hanson, Sandia National Labs.
131
*
132
*
133
*     .. Parameters ..
134
      COMPLEX ONE
135
      PARAMETER (ONE= (1.0E+0,0.0E+0))
136
      COMPLEX ZERO
137
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
138
*     ..
139
*     .. Local Scalars ..
140
      COMPLEX TEMP1,TEMP2
141
      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
142
*     ..
143
*     .. External Functions ..
144
      LOGICAL LSAME
145
      EXTERNAL LSAME
146
*     ..
147
*     .. External Subroutines ..
148
      EXTERNAL XERBLA
149
*     ..
150
*     .. Intrinsic Functions ..
151
      INTRINSIC CONJG,MAX,MIN,REAL
152
*     ..
153
*
154
*     Test the input parameters.
155
*
156
      INFO = 0
157
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
158
          INFO = 1
159
      ELSE IF (N.LT.0) THEN
160
          INFO = 2
161
      ELSE IF (K.LT.0) THEN
162
          INFO = 3
163
      ELSE IF (LDA.LT. (K+1)) THEN
164
          INFO = 6
165
      ELSE IF (INCX.EQ.0) THEN
166
          INFO = 8
167
      ELSE IF (INCY.EQ.0) THEN
168
          INFO = 11
169
      END IF
170
      IF (INFO.NE.0) THEN
171
          CALL XERBLA('CHBMV ',INFO)
172
          RETURN
173
      END IF
174
*
175
*     Quick return if possible.
176
*
177
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
178
*
179
*     Set up the start points in  X  and  Y.
180
*
181
      IF (INCX.GT.0) THEN
182
          KX = 1
183
      ELSE
184
          KX = 1 - (N-1)*INCX
185
      END IF
186
      IF (INCY.GT.0) THEN
187
          KY = 1
188
      ELSE
189
          KY = 1 - (N-1)*INCY
190
      END IF
191
*
192
*     Start the operations. In this version the elements of the array A
193
*     are accessed sequentially with one pass through A.
194
*
195
*     First form  y := beta*y.
196
*
197
      IF (BETA.NE.ONE) THEN
198
          IF (INCY.EQ.1) THEN
199
              IF (BETA.EQ.ZERO) THEN
200
                  DO 10 I = 1,N
201
                      Y(I) = ZERO
202
   10             CONTINUE
203
              ELSE
204
                  DO 20 I = 1,N
205
                      Y(I) = BETA*Y(I)
206
   20             CONTINUE
207
              END IF
208
          ELSE
209
              IY = KY
210
              IF (BETA.EQ.ZERO) THEN
211
                  DO 30 I = 1,N
212
                      Y(IY) = ZERO
213
                      IY = IY + INCY
214
   30             CONTINUE
215
              ELSE
216
                  DO 40 I = 1,N
217
                      Y(IY) = BETA*Y(IY)
218
                      IY = IY + INCY
219
   40             CONTINUE
220
              END IF
221
          END IF
222
      END IF
223
      IF (ALPHA.EQ.ZERO) RETURN
224
      IF (LSAME(UPLO,'U')) THEN
225
*
226
*        Form  y  when upper triangle of A is stored.
227
*
228
          KPLUS1 = K + 1
229
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
230
              DO 60 J = 1,N
231
                  TEMP1 = ALPHA*X(J)
232
                  TEMP2 = ZERO
233
                  L = KPLUS1 - J
234
                  DO 50 I = MAX(1,J-K),J - 1
235
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
236
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
237
   50             CONTINUE
238
                  Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
239
   60         CONTINUE
240
          ELSE
241
              JX = KX
242
              JY = KY
243
              DO 80 J = 1,N
244
                  TEMP1 = ALPHA*X(JX)
245
                  TEMP2 = ZERO
246
                  IX = KX
247
                  IY = KY
248
                  L = KPLUS1 - J
249
                  DO 70 I = MAX(1,J-K),J - 1
250
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
251
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
252
                      IX = IX + INCX
253
                      IY = IY + INCY
254
   70             CONTINUE
255
                  Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
256
                  JX = JX + INCX
257
                  JY = JY + INCY
258
                  IF (J.GT.K) THEN
259
                      KX = KX + INCX
260
                      KY = KY + INCY
261
                  END IF
262
   80         CONTINUE
263
          END IF
264
      ELSE
265
*
266
*        Form  y  when lower triangle of A is stored.
267
*
268
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
269
              DO 100 J = 1,N
270
                  TEMP1 = ALPHA*X(J)
271
                  TEMP2 = ZERO
272
                  Y(J) = Y(J) + TEMP1*REAL(A(1,J))
273
                  L = 1 - J
274
                  DO 90 I = J + 1,MIN(N,J+K)
275
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
276
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
277
   90             CONTINUE
278
                  Y(J) = Y(J) + ALPHA*TEMP2
279
  100         CONTINUE
280
          ELSE
281
              JX = KX
282
              JY = KY
283
              DO 120 J = 1,N
284
                  TEMP1 = ALPHA*X(JX)
285
                  TEMP2 = ZERO
286
                  Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
287
                  L = 1 - J
288
                  IX = JX
289
                  IY = JY
290
                  DO 110 I = J + 1,MIN(N,J+K)
291
                      IX = IX + INCX
292
                      IY = IY + INCY
293
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
294
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
295
  110             CONTINUE
296
                  Y(JY) = Y(JY) + ALPHA*TEMP2
297
                  JX = JX + INCX
298
                  JY = JY + INCY
299
  120         CONTINUE
300
          END IF
301
      END IF
302
*
303
      RETURN
304
*
305
*     End of CHBMV .
306
*
307
      END