Statistiques
| Révision :

root / src / blas / stpsv.f @ 11

Historique | Voir | Annoter | Télécharger (9,08 ko)

1 1 pfleura2
      SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2 1 pfleura2
*     .. Scalar Arguments ..
3 1 pfleura2
      INTEGER INCX,N
4 1 pfleura2
      CHARACTER DIAG,TRANS,UPLO
5 1 pfleura2
*     ..
6 1 pfleura2
*     .. Array Arguments ..
7 1 pfleura2
      REAL AP(*),X(*)
8 1 pfleura2
*     ..
9 1 pfleura2
*
10 1 pfleura2
*  Purpose
11 1 pfleura2
*  =======
12 1 pfleura2
*
13 1 pfleura2
*  STPSV  solves one of the systems of equations
14 1 pfleura2
*
15 1 pfleura2
*     A*x = b,   or   A'*x = b,
16 1 pfleura2
*
17 1 pfleura2
*  where b and x are n element vectors and A is an n by n unit, or
18 1 pfleura2
*  non-unit, upper or lower triangular matrix, supplied in packed form.
19 1 pfleura2
*
20 1 pfleura2
*  No test for singularity or near-singularity is included in this
21 1 pfleura2
*  routine. Such tests must be performed before calling this routine.
22 1 pfleura2
*
23 1 pfleura2
*  Arguments
24 1 pfleura2
*  ==========
25 1 pfleura2
*
26 1 pfleura2
*  UPLO   - CHARACTER*1.
27 1 pfleura2
*           On entry, UPLO specifies whether the matrix is an upper or
28 1 pfleura2
*           lower triangular matrix as follows:
29 1 pfleura2
*
30 1 pfleura2
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
31 1 pfleura2
*
32 1 pfleura2
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
33 1 pfleura2
*
34 1 pfleura2
*           Unchanged on exit.
35 1 pfleura2
*
36 1 pfleura2
*  TRANS  - CHARACTER*1.
37 1 pfleura2
*           On entry, TRANS specifies the equations to be solved as
38 1 pfleura2
*           follows:
39 1 pfleura2
*
40 1 pfleura2
*              TRANS = 'N' or 'n'   A*x = b.
41 1 pfleura2
*
42 1 pfleura2
*              TRANS = 'T' or 't'   A'*x = b.
43 1 pfleura2
*
44 1 pfleura2
*              TRANS = 'C' or 'c'   A'*x = b.
45 1 pfleura2
*
46 1 pfleura2
*           Unchanged on exit.
47 1 pfleura2
*
48 1 pfleura2
*  DIAG   - CHARACTER*1.
49 1 pfleura2
*           On entry, DIAG specifies whether or not A is unit
50 1 pfleura2
*           triangular as follows:
51 1 pfleura2
*
52 1 pfleura2
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
53 1 pfleura2
*
54 1 pfleura2
*              DIAG = 'N' or 'n'   A is not assumed to be unit
55 1 pfleura2
*                                  triangular.
56 1 pfleura2
*
57 1 pfleura2
*           Unchanged on exit.
58 1 pfleura2
*
59 1 pfleura2
*  N      - INTEGER.
60 1 pfleura2
*           On entry, N specifies the order of the matrix A.
61 1 pfleura2
*           N must be at least zero.
62 1 pfleura2
*           Unchanged on exit.
63 1 pfleura2
*
64 1 pfleura2
*  AP     - REAL             array of DIMENSION at least
65 1 pfleura2
*           ( ( n*( n + 1 ) )/2 ).
66 1 pfleura2
*           Before entry with  UPLO = 'U' or 'u', the array AP must
67 1 pfleura2
*           contain the upper triangular matrix packed sequentially,
68 1 pfleura2
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
69 1 pfleura2
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
70 1 pfleura2
*           respectively, and so on.
71 1 pfleura2
*           Before entry with UPLO = 'L' or 'l', the array AP must
72 1 pfleura2
*           contain the lower triangular matrix packed sequentially,
73 1 pfleura2
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
74 1 pfleura2
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
75 1 pfleura2
*           respectively, and so on.
76 1 pfleura2
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
77 1 pfleura2
*           A are not referenced, but are assumed to be unity.
78 1 pfleura2
*           Unchanged on exit.
79 1 pfleura2
*
80 1 pfleura2
*  X      - REAL             array of dimension at least
81 1 pfleura2
*           ( 1 + ( n - 1 )*abs( INCX ) ).
82 1 pfleura2
*           Before entry, the incremented array X must contain the n
83 1 pfleura2
*           element right-hand side vector b. On exit, X is overwritten
84 1 pfleura2
*           with the solution vector x.
85 1 pfleura2
*
86 1 pfleura2
*  INCX   - INTEGER.
87 1 pfleura2
*           On entry, INCX specifies the increment for the elements of
88 1 pfleura2
*           X. INCX must not be zero.
89 1 pfleura2
*           Unchanged on exit.
90 1 pfleura2
*
91 1 pfleura2
*
92 1 pfleura2
*  Level 2 Blas routine.
93 1 pfleura2
*
94 1 pfleura2
*  -- Written on 22-October-1986.
95 1 pfleura2
*     Jack Dongarra, Argonne National Lab.
96 1 pfleura2
*     Jeremy Du Croz, Nag Central Office.
97 1 pfleura2
*     Sven Hammarling, Nag Central Office.
98 1 pfleura2
*     Richard Hanson, Sandia National Labs.
99 1 pfleura2
*
100 1 pfleura2
*
101 1 pfleura2
*     .. Parameters ..
102 1 pfleura2
      REAL ZERO
103 1 pfleura2
      PARAMETER (ZERO=0.0E+0)
104 1 pfleura2
*     ..
105 1 pfleura2
*     .. Local Scalars ..
106 1 pfleura2
      REAL TEMP
107 1 pfleura2
      INTEGER I,INFO,IX,J,JX,K,KK,KX
108 1 pfleura2
      LOGICAL NOUNIT
109 1 pfleura2
*     ..
110 1 pfleura2
*     .. External Functions ..
111 1 pfleura2
      LOGICAL LSAME
112 1 pfleura2
      EXTERNAL LSAME
113 1 pfleura2
*     ..
114 1 pfleura2
*     .. External Subroutines ..
115 1 pfleura2
      EXTERNAL XERBLA
116 1 pfleura2
*     ..
117 1 pfleura2
*
118 1 pfleura2
*     Test the input parameters.
119 1 pfleura2
*
120 1 pfleura2
      INFO = 0
121 1 pfleura2
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
122 1 pfleura2
          INFO = 1
123 1 pfleura2
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
124 1 pfleura2
     +         .NOT.LSAME(TRANS,'C')) THEN
125 1 pfleura2
          INFO = 2
126 1 pfleura2
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
127 1 pfleura2
          INFO = 3
128 1 pfleura2
      ELSE IF (N.LT.0) THEN
129 1 pfleura2
          INFO = 4
130 1 pfleura2
      ELSE IF (INCX.EQ.0) THEN
131 1 pfleura2
          INFO = 7
132 1 pfleura2
      END IF
133 1 pfleura2
      IF (INFO.NE.0) THEN
134 1 pfleura2
          CALL XERBLA('STPSV ',INFO)
135 1 pfleura2
          RETURN
136 1 pfleura2
      END IF
137 1 pfleura2
*
138 1 pfleura2
*     Quick return if possible.
139 1 pfleura2
*
140 1 pfleura2
      IF (N.EQ.0) RETURN
141 1 pfleura2
*
142 1 pfleura2
      NOUNIT = LSAME(DIAG,'N')
143 1 pfleura2
*
144 1 pfleura2
*     Set up the start point in X if the increment is not unity. This
145 1 pfleura2
*     will be  ( N - 1 )*INCX  too small for descending loops.
146 1 pfleura2
*
147 1 pfleura2
      IF (INCX.LE.0) THEN
148 1 pfleura2
          KX = 1 - (N-1)*INCX
149 1 pfleura2
      ELSE IF (INCX.NE.1) THEN
150 1 pfleura2
          KX = 1
151 1 pfleura2
      END IF
152 1 pfleura2
*
153 1 pfleura2
*     Start the operations. In this version the elements of AP are
154 1 pfleura2
*     accessed sequentially with one pass through AP.
155 1 pfleura2
*
156 1 pfleura2
      IF (LSAME(TRANS,'N')) THEN
157 1 pfleura2
*
158 1 pfleura2
*        Form  x := inv( A )*x.
159 1 pfleura2
*
160 1 pfleura2
          IF (LSAME(UPLO,'U')) THEN
161 1 pfleura2
              KK = (N* (N+1))/2
162 1 pfleura2
              IF (INCX.EQ.1) THEN
163 1 pfleura2
                  DO 20 J = N,1,-1
164 1 pfleura2
                      IF (X(J).NE.ZERO) THEN
165 1 pfleura2
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
166 1 pfleura2
                          TEMP = X(J)
167 1 pfleura2
                          K = KK - 1
168 1 pfleura2
                          DO 10 I = J - 1,1,-1
169 1 pfleura2
                              X(I) = X(I) - TEMP*AP(K)
170 1 pfleura2
                              K = K - 1
171 1 pfleura2
   10                     CONTINUE
172 1 pfleura2
                      END IF
173 1 pfleura2
                      KK = KK - J
174 1 pfleura2
   20             CONTINUE
175 1 pfleura2
              ELSE
176 1 pfleura2
                  JX = KX + (N-1)*INCX
177 1 pfleura2
                  DO 40 J = N,1,-1
178 1 pfleura2
                      IF (X(JX).NE.ZERO) THEN
179 1 pfleura2
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
180 1 pfleura2
                          TEMP = X(JX)
181 1 pfleura2
                          IX = JX
182 1 pfleura2
                          DO 30 K = KK - 1,KK - J + 1,-1
183 1 pfleura2
                              IX = IX - INCX
184 1 pfleura2
                              X(IX) = X(IX) - TEMP*AP(K)
185 1 pfleura2
   30                     CONTINUE
186 1 pfleura2
                      END IF
187 1 pfleura2
                      JX = JX - INCX
188 1 pfleura2
                      KK = KK - J
189 1 pfleura2
   40             CONTINUE
190 1 pfleura2
              END IF
191 1 pfleura2
          ELSE
192 1 pfleura2
              KK = 1
193 1 pfleura2
              IF (INCX.EQ.1) THEN
194 1 pfleura2
                  DO 60 J = 1,N
195 1 pfleura2
                      IF (X(J).NE.ZERO) THEN
196 1 pfleura2
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
197 1 pfleura2
                          TEMP = X(J)
198 1 pfleura2
                          K = KK + 1
199 1 pfleura2
                          DO 50 I = J + 1,N
200 1 pfleura2
                              X(I) = X(I) - TEMP*AP(K)
201 1 pfleura2
                              K = K + 1
202 1 pfleura2
   50                     CONTINUE
203 1 pfleura2
                      END IF
204 1 pfleura2
                      KK = KK + (N-J+1)
205 1 pfleura2
   60             CONTINUE
206 1 pfleura2
              ELSE
207 1 pfleura2
                  JX = KX
208 1 pfleura2
                  DO 80 J = 1,N
209 1 pfleura2
                      IF (X(JX).NE.ZERO) THEN
210 1 pfleura2
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
211 1 pfleura2
                          TEMP = X(JX)
212 1 pfleura2
                          IX = JX
213 1 pfleura2
                          DO 70 K = KK + 1,KK + N - J
214 1 pfleura2
                              IX = IX + INCX
215 1 pfleura2
                              X(IX) = X(IX) - TEMP*AP(K)
216 1 pfleura2
   70                     CONTINUE
217 1 pfleura2
                      END IF
218 1 pfleura2
                      JX = JX + INCX
219 1 pfleura2
                      KK = KK + (N-J+1)
220 1 pfleura2
   80             CONTINUE
221 1 pfleura2
              END IF
222 1 pfleura2
          END IF
223 1 pfleura2
      ELSE
224 1 pfleura2
*
225 1 pfleura2
*        Form  x := inv( A' )*x.
226 1 pfleura2
*
227 1 pfleura2
          IF (LSAME(UPLO,'U')) THEN
228 1 pfleura2
              KK = 1
229 1 pfleura2
              IF (INCX.EQ.1) THEN
230 1 pfleura2
                  DO 100 J = 1,N
231 1 pfleura2
                      TEMP = X(J)
232 1 pfleura2
                      K = KK
233 1 pfleura2
                      DO 90 I = 1,J - 1
234 1 pfleura2
                          TEMP = TEMP - AP(K)*X(I)
235 1 pfleura2
                          K = K + 1
236 1 pfleura2
   90                 CONTINUE
237 1 pfleura2
                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
238 1 pfleura2
                      X(J) = TEMP
239 1 pfleura2
                      KK = KK + J
240 1 pfleura2
  100             CONTINUE
241 1 pfleura2
              ELSE
242 1 pfleura2
                  JX = KX
243 1 pfleura2
                  DO 120 J = 1,N
244 1 pfleura2
                      TEMP = X(JX)
245 1 pfleura2
                      IX = KX
246 1 pfleura2
                      DO 110 K = KK,KK + J - 2
247 1 pfleura2
                          TEMP = TEMP - AP(K)*X(IX)
248 1 pfleura2
                          IX = IX + INCX
249 1 pfleura2
  110                 CONTINUE
250 1 pfleura2
                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
251 1 pfleura2
                      X(JX) = TEMP
252 1 pfleura2
                      JX = JX + INCX
253 1 pfleura2
                      KK = KK + J
254 1 pfleura2
  120             CONTINUE
255 1 pfleura2
              END IF
256 1 pfleura2
          ELSE
257 1 pfleura2
              KK = (N* (N+1))/2
258 1 pfleura2
              IF (INCX.EQ.1) THEN
259 1 pfleura2
                  DO 140 J = N,1,-1
260 1 pfleura2
                      TEMP = X(J)
261 1 pfleura2
                      K = KK
262 1 pfleura2
                      DO 130 I = N,J + 1,-1
263 1 pfleura2
                          TEMP = TEMP - AP(K)*X(I)
264 1 pfleura2
                          K = K - 1
265 1 pfleura2
  130                 CONTINUE
266 1 pfleura2
                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
267 1 pfleura2
                      X(J) = TEMP
268 1 pfleura2
                      KK = KK - (N-J+1)
269 1 pfleura2
  140             CONTINUE
270 1 pfleura2
              ELSE
271 1 pfleura2
                  KX = KX + (N-1)*INCX
272 1 pfleura2
                  JX = KX
273 1 pfleura2
                  DO 160 J = N,1,-1
274 1 pfleura2
                      TEMP = X(JX)
275 1 pfleura2
                      IX = KX
276 1 pfleura2
                      DO 150 K = KK,KK - (N- (J+1)),-1
277 1 pfleura2
                          TEMP = TEMP - AP(K)*X(IX)
278 1 pfleura2
                          IX = IX - INCX
279 1 pfleura2
  150                 CONTINUE
280 1 pfleura2
                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
281 1 pfleura2
                      X(JX) = TEMP
282 1 pfleura2
                      JX = JX - INCX
283 1 pfleura2
                      KK = KK - (N-J+1)
284 1 pfleura2
  160             CONTINUE
285 1 pfleura2
              END IF
286 1 pfleura2
          END IF
287 1 pfleura2
      END IF
288 1 pfleura2
*
289 1 pfleura2
      RETURN
290 1 pfleura2
*
291 1 pfleura2
*     End of STPSV .
292 1 pfleura2
*
293 1 pfleura2
      END