root / src / blas / ssymm.f @ 11
Historique | Voir | Annoter | Télécharger (9,32 ko)
1 | 1 | pfleura2 | SUBROUTINE SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|---|---|
2 | 1 | pfleura2 | * .. Scalar Arguments .. |
3 | 1 | pfleura2 | REAL ALPHA,BETA |
4 | 1 | pfleura2 | INTEGER LDA,LDB,LDC,M,N |
5 | 1 | pfleura2 | CHARACTER SIDE,UPLO |
6 | 1 | pfleura2 | * .. |
7 | 1 | pfleura2 | * .. Array Arguments .. |
8 | 1 | pfleura2 | REAL A(LDA,*),B(LDB,*),C(LDC,*) |
9 | 1 | pfleura2 | * .. |
10 | 1 | pfleura2 | * |
11 | 1 | pfleura2 | * Purpose |
12 | 1 | pfleura2 | * ======= |
13 | 1 | pfleura2 | * |
14 | 1 | pfleura2 | * SSYMM performs one of the matrix-matrix operations |
15 | 1 | pfleura2 | * |
16 | 1 | pfleura2 | * C := alpha*A*B + beta*C, |
17 | 1 | pfleura2 | * |
18 | 1 | pfleura2 | * or |
19 | 1 | pfleura2 | * |
20 | 1 | pfleura2 | * C := alpha*B*A + beta*C, |
21 | 1 | pfleura2 | * |
22 | 1 | pfleura2 | * where alpha and beta are scalars, A is a symmetric matrix and B and |
23 | 1 | pfleura2 | * C are m by n matrices. |
24 | 1 | pfleura2 | * |
25 | 1 | pfleura2 | * Arguments |
26 | 1 | pfleura2 | * ========== |
27 | 1 | pfleura2 | * |
28 | 1 | pfleura2 | * SIDE - CHARACTER*1. |
29 | 1 | pfleura2 | * On entry, SIDE specifies whether the symmetric matrix A |
30 | 1 | pfleura2 | * appears on the left or right in the operation as follows: |
31 | 1 | pfleura2 | * |
32 | 1 | pfleura2 | * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, |
33 | 1 | pfleura2 | * |
34 | 1 | pfleura2 | * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, |
35 | 1 | pfleura2 | * |
36 | 1 | pfleura2 | * Unchanged on exit. |
37 | 1 | pfleura2 | * |
38 | 1 | pfleura2 | * UPLO - CHARACTER*1. |
39 | 1 | pfleura2 | * On entry, UPLO specifies whether the upper or lower |
40 | 1 | pfleura2 | * triangular part of the symmetric matrix A is to be |
41 | 1 | pfleura2 | * referenced as follows: |
42 | 1 | pfleura2 | * |
43 | 1 | pfleura2 | * UPLO = 'U' or 'u' Only the upper triangular part of the |
44 | 1 | pfleura2 | * symmetric matrix is to be referenced. |
45 | 1 | pfleura2 | * |
46 | 1 | pfleura2 | * UPLO = 'L' or 'l' Only the lower triangular part of the |
47 | 1 | pfleura2 | * symmetric matrix is to be referenced. |
48 | 1 | pfleura2 | * |
49 | 1 | pfleura2 | * Unchanged on exit. |
50 | 1 | pfleura2 | * |
51 | 1 | pfleura2 | * M - INTEGER. |
52 | 1 | pfleura2 | * On entry, M specifies the number of rows of the matrix C. |
53 | 1 | pfleura2 | * M must be at least zero. |
54 | 1 | pfleura2 | * Unchanged on exit. |
55 | 1 | pfleura2 | * |
56 | 1 | pfleura2 | * N - INTEGER. |
57 | 1 | pfleura2 | * On entry, N specifies the number of columns of the matrix C. |
58 | 1 | pfleura2 | * N must be at least zero. |
59 | 1 | pfleura2 | * Unchanged on exit. |
60 | 1 | pfleura2 | * |
61 | 1 | pfleura2 | * ALPHA - REAL . |
62 | 1 | pfleura2 | * On entry, ALPHA specifies the scalar alpha. |
63 | 1 | pfleura2 | * Unchanged on exit. |
64 | 1 | pfleura2 | * |
65 | 1 | pfleura2 | * A - REAL array of DIMENSION ( LDA, ka ), where ka is |
66 | 1 | pfleura2 | * m when SIDE = 'L' or 'l' and is n otherwise. |
67 | 1 | pfleura2 | * Before entry with SIDE = 'L' or 'l', the m by m part of |
68 | 1 | pfleura2 | * the array A must contain the symmetric matrix, such that |
69 | 1 | pfleura2 | * when UPLO = 'U' or 'u', the leading m by m upper triangular |
70 | 1 | pfleura2 | * part of the array A must contain the upper triangular part |
71 | 1 | pfleura2 | * of the symmetric matrix and the strictly lower triangular |
72 | 1 | pfleura2 | * part of A is not referenced, and when UPLO = 'L' or 'l', |
73 | 1 | pfleura2 | * the leading m by m lower triangular part of the array A |
74 | 1 | pfleura2 | * must contain the lower triangular part of the symmetric |
75 | 1 | pfleura2 | * matrix and the strictly upper triangular part of A is not |
76 | 1 | pfleura2 | * referenced. |
77 | 1 | pfleura2 | * Before entry with SIDE = 'R' or 'r', the n by n part of |
78 | 1 | pfleura2 | * the array A must contain the symmetric matrix, such that |
79 | 1 | pfleura2 | * when UPLO = 'U' or 'u', the leading n by n upper triangular |
80 | 1 | pfleura2 | * part of the array A must contain the upper triangular part |
81 | 1 | pfleura2 | * of the symmetric matrix and the strictly lower triangular |
82 | 1 | pfleura2 | * part of A is not referenced, and when UPLO = 'L' or 'l', |
83 | 1 | pfleura2 | * the leading n by n lower triangular part of the array A |
84 | 1 | pfleura2 | * must contain the lower triangular part of the symmetric |
85 | 1 | pfleura2 | * matrix and the strictly upper triangular part of A is not |
86 | 1 | pfleura2 | * referenced. |
87 | 1 | pfleura2 | * Unchanged on exit. |
88 | 1 | pfleura2 | * |
89 | 1 | pfleura2 | * LDA - INTEGER. |
90 | 1 | pfleura2 | * On entry, LDA specifies the first dimension of A as declared |
91 | 1 | pfleura2 | * in the calling (sub) program. When SIDE = 'L' or 'l' then |
92 | 1 | pfleura2 | * LDA must be at least max( 1, m ), otherwise LDA must be at |
93 | 1 | pfleura2 | * least max( 1, n ). |
94 | 1 | pfleura2 | * Unchanged on exit. |
95 | 1 | pfleura2 | * |
96 | 1 | pfleura2 | * B - REAL array of DIMENSION ( LDB, n ). |
97 | 1 | pfleura2 | * Before entry, the leading m by n part of the array B must |
98 | 1 | pfleura2 | * contain the matrix B. |
99 | 1 | pfleura2 | * Unchanged on exit. |
100 | 1 | pfleura2 | * |
101 | 1 | pfleura2 | * LDB - INTEGER. |
102 | 1 | pfleura2 | * On entry, LDB specifies the first dimension of B as declared |
103 | 1 | pfleura2 | * in the calling (sub) program. LDB must be at least |
104 | 1 | pfleura2 | * max( 1, m ). |
105 | 1 | pfleura2 | * Unchanged on exit. |
106 | 1 | pfleura2 | * |
107 | 1 | pfleura2 | * BETA - REAL . |
108 | 1 | pfleura2 | * On entry, BETA specifies the scalar beta. When BETA is |
109 | 1 | pfleura2 | * supplied as zero then C need not be set on input. |
110 | 1 | pfleura2 | * Unchanged on exit. |
111 | 1 | pfleura2 | * |
112 | 1 | pfleura2 | * C - REAL array of DIMENSION ( LDC, n ). |
113 | 1 | pfleura2 | * Before entry, the leading m by n part of the array C must |
114 | 1 | pfleura2 | * contain the matrix C, except when beta is zero, in which |
115 | 1 | pfleura2 | * case C need not be set on entry. |
116 | 1 | pfleura2 | * On exit, the array C is overwritten by the m by n updated |
117 | 1 | pfleura2 | * matrix. |
118 | 1 | pfleura2 | * |
119 | 1 | pfleura2 | * LDC - INTEGER. |
120 | 1 | pfleura2 | * On entry, LDC specifies the first dimension of C as declared |
121 | 1 | pfleura2 | * in the calling (sub) program. LDC must be at least |
122 | 1 | pfleura2 | * max( 1, m ). |
123 | 1 | pfleura2 | * Unchanged on exit. |
124 | 1 | pfleura2 | * |
125 | 1 | pfleura2 | * |
126 | 1 | pfleura2 | * Level 3 Blas routine. |
127 | 1 | pfleura2 | * |
128 | 1 | pfleura2 | * -- Written on 8-February-1989. |
129 | 1 | pfleura2 | * Jack Dongarra, Argonne National Laboratory. |
130 | 1 | pfleura2 | * Iain Duff, AERE Harwell. |
131 | 1 | pfleura2 | * Jeremy Du Croz, Numerical Algorithms Group Ltd. |
132 | 1 | pfleura2 | * Sven Hammarling, Numerical Algorithms Group Ltd. |
133 | 1 | pfleura2 | * |
134 | 1 | pfleura2 | * |
135 | 1 | pfleura2 | * .. External Functions .. |
136 | 1 | pfleura2 | LOGICAL LSAME |
137 | 1 | pfleura2 | EXTERNAL LSAME |
138 | 1 | pfleura2 | * .. |
139 | 1 | pfleura2 | * .. External Subroutines .. |
140 | 1 | pfleura2 | EXTERNAL XERBLA |
141 | 1 | pfleura2 | * .. |
142 | 1 | pfleura2 | * .. Intrinsic Functions .. |
143 | 1 | pfleura2 | INTRINSIC MAX |
144 | 1 | pfleura2 | * .. |
145 | 1 | pfleura2 | * .. Local Scalars .. |
146 | 1 | pfleura2 | REAL TEMP1,TEMP2 |
147 | 1 | pfleura2 | INTEGER I,INFO,J,K,NROWA |
148 | 1 | pfleura2 | LOGICAL UPPER |
149 | 1 | pfleura2 | * .. |
150 | 1 | pfleura2 | * .. Parameters .. |
151 | 1 | pfleura2 | REAL ONE,ZERO |
152 | 1 | pfleura2 | PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
153 | 1 | pfleura2 | * .. |
154 | 1 | pfleura2 | * |
155 | 1 | pfleura2 | * Set NROWA as the number of rows of A. |
156 | 1 | pfleura2 | * |
157 | 1 | pfleura2 | IF (LSAME(SIDE,'L')) THEN |
158 | 1 | pfleura2 | NROWA = M |
159 | 1 | pfleura2 | ELSE |
160 | 1 | pfleura2 | NROWA = N |
161 | 1 | pfleura2 | END IF |
162 | 1 | pfleura2 | UPPER = LSAME(UPLO,'U') |
163 | 1 | pfleura2 | * |
164 | 1 | pfleura2 | * Test the input parameters. |
165 | 1 | pfleura2 | * |
166 | 1 | pfleura2 | INFO = 0 |
167 | 1 | pfleura2 | IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN |
168 | 1 | pfleura2 | INFO = 1 |
169 | 1 | pfleura2 | ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
170 | 1 | pfleura2 | INFO = 2 |
171 | 1 | pfleura2 | ELSE IF (M.LT.0) THEN |
172 | 1 | pfleura2 | INFO = 3 |
173 | 1 | pfleura2 | ELSE IF (N.LT.0) THEN |
174 | 1 | pfleura2 | INFO = 4 |
175 | 1 | pfleura2 | ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
176 | 1 | pfleura2 | INFO = 7 |
177 | 1 | pfleura2 | ELSE IF (LDB.LT.MAX(1,M)) THEN |
178 | 1 | pfleura2 | INFO = 9 |
179 | 1 | pfleura2 | ELSE IF (LDC.LT.MAX(1,M)) THEN |
180 | 1 | pfleura2 | INFO = 12 |
181 | 1 | pfleura2 | END IF |
182 | 1 | pfleura2 | IF (INFO.NE.0) THEN |
183 | 1 | pfleura2 | CALL XERBLA('SSYMM ',INFO) |
184 | 1 | pfleura2 | RETURN |
185 | 1 | pfleura2 | END IF |
186 | 1 | pfleura2 | * |
187 | 1 | pfleura2 | * Quick return if possible. |
188 | 1 | pfleura2 | * |
189 | 1 | pfleura2 | IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
190 | 1 | pfleura2 | + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
191 | 1 | pfleura2 | * |
192 | 1 | pfleura2 | * And when alpha.eq.zero. |
193 | 1 | pfleura2 | * |
194 | 1 | pfleura2 | IF (ALPHA.EQ.ZERO) THEN |
195 | 1 | pfleura2 | IF (BETA.EQ.ZERO) THEN |
196 | 1 | pfleura2 | DO 20 J = 1,N |
197 | 1 | pfleura2 | DO 10 I = 1,M |
198 | 1 | pfleura2 | C(I,J) = ZERO |
199 | 1 | pfleura2 | 10 CONTINUE |
200 | 1 | pfleura2 | 20 CONTINUE |
201 | 1 | pfleura2 | ELSE |
202 | 1 | pfleura2 | DO 40 J = 1,N |
203 | 1 | pfleura2 | DO 30 I = 1,M |
204 | 1 | pfleura2 | C(I,J) = BETA*C(I,J) |
205 | 1 | pfleura2 | 30 CONTINUE |
206 | 1 | pfleura2 | 40 CONTINUE |
207 | 1 | pfleura2 | END IF |
208 | 1 | pfleura2 | RETURN |
209 | 1 | pfleura2 | END IF |
210 | 1 | pfleura2 | * |
211 | 1 | pfleura2 | * Start the operations. |
212 | 1 | pfleura2 | * |
213 | 1 | pfleura2 | IF (LSAME(SIDE,'L')) THEN |
214 | 1 | pfleura2 | * |
215 | 1 | pfleura2 | * Form C := alpha*A*B + beta*C. |
216 | 1 | pfleura2 | * |
217 | 1 | pfleura2 | IF (UPPER) THEN |
218 | 1 | pfleura2 | DO 70 J = 1,N |
219 | 1 | pfleura2 | DO 60 I = 1,M |
220 | 1 | pfleura2 | TEMP1 = ALPHA*B(I,J) |
221 | 1 | pfleura2 | TEMP2 = ZERO |
222 | 1 | pfleura2 | DO 50 K = 1,I - 1 |
223 | 1 | pfleura2 | C(K,J) = C(K,J) + TEMP1*A(K,I) |
224 | 1 | pfleura2 | TEMP2 = TEMP2 + B(K,J)*A(K,I) |
225 | 1 | pfleura2 | 50 CONTINUE |
226 | 1 | pfleura2 | IF (BETA.EQ.ZERO) THEN |
227 | 1 | pfleura2 | C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 |
228 | 1 | pfleura2 | ELSE |
229 | 1 | pfleura2 | C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + |
230 | 1 | pfleura2 | + ALPHA*TEMP2 |
231 | 1 | pfleura2 | END IF |
232 | 1 | pfleura2 | 60 CONTINUE |
233 | 1 | pfleura2 | 70 CONTINUE |
234 | 1 | pfleura2 | ELSE |
235 | 1 | pfleura2 | DO 100 J = 1,N |
236 | 1 | pfleura2 | DO 90 I = M,1,-1 |
237 | 1 | pfleura2 | TEMP1 = ALPHA*B(I,J) |
238 | 1 | pfleura2 | TEMP2 = ZERO |
239 | 1 | pfleura2 | DO 80 K = I + 1,M |
240 | 1 | pfleura2 | C(K,J) = C(K,J) + TEMP1*A(K,I) |
241 | 1 | pfleura2 | TEMP2 = TEMP2 + B(K,J)*A(K,I) |
242 | 1 | pfleura2 | 80 CONTINUE |
243 | 1 | pfleura2 | IF (BETA.EQ.ZERO) THEN |
244 | 1 | pfleura2 | C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 |
245 | 1 | pfleura2 | ELSE |
246 | 1 | pfleura2 | C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + |
247 | 1 | pfleura2 | + ALPHA*TEMP2 |
248 | 1 | pfleura2 | END IF |
249 | 1 | pfleura2 | 90 CONTINUE |
250 | 1 | pfleura2 | 100 CONTINUE |
251 | 1 | pfleura2 | END IF |
252 | 1 | pfleura2 | ELSE |
253 | 1 | pfleura2 | * |
254 | 1 | pfleura2 | * Form C := alpha*B*A + beta*C. |
255 | 1 | pfleura2 | * |
256 | 1 | pfleura2 | DO 170 J = 1,N |
257 | 1 | pfleura2 | TEMP1 = ALPHA*A(J,J) |
258 | 1 | pfleura2 | IF (BETA.EQ.ZERO) THEN |
259 | 1 | pfleura2 | DO 110 I = 1,M |
260 | 1 | pfleura2 | C(I,J) = TEMP1*B(I,J) |
261 | 1 | pfleura2 | 110 CONTINUE |
262 | 1 | pfleura2 | ELSE |
263 | 1 | pfleura2 | DO 120 I = 1,M |
264 | 1 | pfleura2 | C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) |
265 | 1 | pfleura2 | 120 CONTINUE |
266 | 1 | pfleura2 | END IF |
267 | 1 | pfleura2 | DO 140 K = 1,J - 1 |
268 | 1 | pfleura2 | IF (UPPER) THEN |
269 | 1 | pfleura2 | TEMP1 = ALPHA*A(K,J) |
270 | 1 | pfleura2 | ELSE |
271 | 1 | pfleura2 | TEMP1 = ALPHA*A(J,K) |
272 | 1 | pfleura2 | END IF |
273 | 1 | pfleura2 | DO 130 I = 1,M |
274 | 1 | pfleura2 | C(I,J) = C(I,J) + TEMP1*B(I,K) |
275 | 1 | pfleura2 | 130 CONTINUE |
276 | 1 | pfleura2 | 140 CONTINUE |
277 | 1 | pfleura2 | DO 160 K = J + 1,N |
278 | 1 | pfleura2 | IF (UPPER) THEN |
279 | 1 | pfleura2 | TEMP1 = ALPHA*A(J,K) |
280 | 1 | pfleura2 | ELSE |
281 | 1 | pfleura2 | TEMP1 = ALPHA*A(K,J) |
282 | 1 | pfleura2 | END IF |
283 | 1 | pfleura2 | DO 150 I = 1,M |
284 | 1 | pfleura2 | C(I,J) = C(I,J) + TEMP1*B(I,K) |
285 | 1 | pfleura2 | 150 CONTINUE |
286 | 1 | pfleura2 | 160 CONTINUE |
287 | 1 | pfleura2 | 170 CONTINUE |
288 | 1 | pfleura2 | END IF |
289 | 1 | pfleura2 | * |
290 | 1 | pfleura2 | RETURN |
291 | 1 | pfleura2 | * |
292 | 1 | pfleura2 | * End of SSYMM . |
293 | 1 | pfleura2 | * |
294 | 1 | pfleura2 | END |