Statistiques
| Révision :

root / src / blas / cherk.f @ 11

Historique | Voir | Annoter | Télécharger (10,45 ko)

1 1 pfleura2
      SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
2 1 pfleura2
*     .. Scalar Arguments ..
3 1 pfleura2
      REAL ALPHA,BETA
4 1 pfleura2
      INTEGER K,LDA,LDC,N
5 1 pfleura2
      CHARACTER TRANS,UPLO
6 1 pfleura2
*     ..
7 1 pfleura2
*     .. Array Arguments ..
8 1 pfleura2
      COMPLEX A(LDA,*),C(LDC,*)
9 1 pfleura2
*     ..
10 1 pfleura2
*
11 1 pfleura2
*  Purpose
12 1 pfleura2
*  =======
13 1 pfleura2
*
14 1 pfleura2
*  CHERK  performs one of the hermitian rank k operations
15 1 pfleura2
*
16 1 pfleura2
*     C := alpha*A*conjg( A' ) + beta*C,
17 1 pfleura2
*
18 1 pfleura2
*  or
19 1 pfleura2
*
20 1 pfleura2
*     C := alpha*conjg( A' )*A + beta*C,
21 1 pfleura2
*
22 1 pfleura2
*  where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
23 1 pfleura2
*  matrix and  A  is an  n by k  matrix in the  first case and a  k by n
24 1 pfleura2
*  matrix in the second case.
25 1 pfleura2
*
26 1 pfleura2
*  Arguments
27 1 pfleura2
*  ==========
28 1 pfleura2
*
29 1 pfleura2
*  UPLO   - CHARACTER*1.
30 1 pfleura2
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
31 1 pfleura2
*           triangular  part  of the  array  C  is to be  referenced  as
32 1 pfleura2
*           follows:
33 1 pfleura2
*
34 1 pfleura2
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
35 1 pfleura2
*                                  is to be referenced.
36 1 pfleura2
*
37 1 pfleura2
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
38 1 pfleura2
*                                  is to be referenced.
39 1 pfleura2
*
40 1 pfleura2
*           Unchanged on exit.
41 1 pfleura2
*
42 1 pfleura2
*  TRANS  - CHARACTER*1.
43 1 pfleura2
*           On entry,  TRANS  specifies the operation to be performed as
44 1 pfleura2
*           follows:
45 1 pfleura2
*
46 1 pfleura2
*              TRANS = 'N' or 'n'   C := alpha*A*conjg( A' ) + beta*C.
47 1 pfleura2
*
48 1 pfleura2
*              TRANS = 'C' or 'c'   C := alpha*conjg( A' )*A + beta*C.
49 1 pfleura2
*
50 1 pfleura2
*           Unchanged on exit.
51 1 pfleura2
*
52 1 pfleura2
*  N      - INTEGER.
53 1 pfleura2
*           On entry,  N specifies the order of the matrix C.  N must be
54 1 pfleura2
*           at least zero.
55 1 pfleura2
*           Unchanged on exit.
56 1 pfleura2
*
57 1 pfleura2
*  K      - INTEGER.
58 1 pfleura2
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
59 1 pfleura2
*           of  columns   of  the   matrix   A,   and  on   entry   with
60 1 pfleura2
*           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
61 1 pfleura2
*           matrix A.  K must be at least zero.
62 1 pfleura2
*           Unchanged on exit.
63 1 pfleura2
*
64 1 pfleura2
*  ALPHA  - REAL            .
65 1 pfleura2
*           On entry, ALPHA specifies the scalar alpha.
66 1 pfleura2
*           Unchanged on exit.
67 1 pfleura2
*
68 1 pfleura2
*  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is
69 1 pfleura2
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
70 1 pfleura2
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
71 1 pfleura2
*           part of the array  A  must contain the matrix  A,  otherwise
72 1 pfleura2
*           the leading  k by n  part of the array  A  must contain  the
73 1 pfleura2
*           matrix A.
74 1 pfleura2
*           Unchanged on exit.
75 1 pfleura2
*
76 1 pfleura2
*  LDA    - INTEGER.
77 1 pfleura2
*           On entry, LDA specifies the first dimension of A as declared
78 1 pfleura2
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
79 1 pfleura2
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
80 1 pfleura2
*           be at least  max( 1, k ).
81 1 pfleura2
*           Unchanged on exit.
82 1 pfleura2
*
83 1 pfleura2
*  BETA   - REAL            .
84 1 pfleura2
*           On entry, BETA specifies the scalar beta.
85 1 pfleura2
*           Unchanged on exit.
86 1 pfleura2
*
87 1 pfleura2
*  C      - COMPLEX          array of DIMENSION ( LDC, n ).
88 1 pfleura2
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
89 1 pfleura2
*           upper triangular part of the array C must contain the upper
90 1 pfleura2
*           triangular part  of the  hermitian matrix  and the strictly
91 1 pfleura2
*           lower triangular part of C is not referenced.  On exit, the
92 1 pfleura2
*           upper triangular part of the array  C is overwritten by the
93 1 pfleura2
*           upper triangular part of the updated matrix.
94 1 pfleura2
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
95 1 pfleura2
*           lower triangular part of the array C must contain the lower
96 1 pfleura2
*           triangular part  of the  hermitian matrix  and the strictly
97 1 pfleura2
*           upper triangular part of C is not referenced.  On exit, the
98 1 pfleura2
*           lower triangular part of the array  C is overwritten by the
99 1 pfleura2
*           lower triangular part of the updated matrix.
100 1 pfleura2
*           Note that the imaginary parts of the diagonal elements need
101 1 pfleura2
*           not be set,  they are assumed to be zero,  and on exit they
102 1 pfleura2
*           are set to zero.
103 1 pfleura2
*
104 1 pfleura2
*  LDC    - INTEGER.
105 1 pfleura2
*           On entry, LDC specifies the first dimension of C as declared
106 1 pfleura2
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
107 1 pfleura2
*           max( 1, n ).
108 1 pfleura2
*           Unchanged on exit.
109 1 pfleura2
*
110 1 pfleura2
*
111 1 pfleura2
*  Level 3 Blas routine.
112 1 pfleura2
*
113 1 pfleura2
*  -- Written on 8-February-1989.
114 1 pfleura2
*     Jack Dongarra, Argonne National Laboratory.
115 1 pfleura2
*     Iain Duff, AERE Harwell.
116 1 pfleura2
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
117 1 pfleura2
*     Sven Hammarling, Numerical Algorithms Group Ltd.
118 1 pfleura2
*
119 1 pfleura2
*  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
120 1 pfleura2
*     Ed Anderson, Cray Research Inc.
121 1 pfleura2
*
122 1 pfleura2
*
123 1 pfleura2
*     .. External Functions ..
124 1 pfleura2
      LOGICAL LSAME
125 1 pfleura2
      EXTERNAL LSAME
126 1 pfleura2
*     ..
127 1 pfleura2
*     .. External Subroutines ..
128 1 pfleura2
      EXTERNAL XERBLA
129 1 pfleura2
*     ..
130 1 pfleura2
*     .. Intrinsic Functions ..
131 1 pfleura2
      INTRINSIC CMPLX,CONJG,MAX,REAL
132 1 pfleura2
*     ..
133 1 pfleura2
*     .. Local Scalars ..
134 1 pfleura2
      COMPLEX TEMP
135 1 pfleura2
      REAL RTEMP
136 1 pfleura2
      INTEGER I,INFO,J,L,NROWA
137 1 pfleura2
      LOGICAL UPPER
138 1 pfleura2
*     ..
139 1 pfleura2
*     .. Parameters ..
140 1 pfleura2
      REAL ONE,ZERO
141 1 pfleura2
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
142 1 pfleura2
*     ..
143 1 pfleura2
*
144 1 pfleura2
*     Test the input parameters.
145 1 pfleura2
*
146 1 pfleura2
      IF (LSAME(TRANS,'N')) THEN
147 1 pfleura2
          NROWA = N
148 1 pfleura2
      ELSE
149 1 pfleura2
          NROWA = K
150 1 pfleura2
      END IF
151 1 pfleura2
      UPPER = LSAME(UPLO,'U')
152 1 pfleura2
*
153 1 pfleura2
      INFO = 0
154 1 pfleura2
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
155 1 pfleura2
          INFO = 1
156 1 pfleura2
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
157 1 pfleura2
     +         (.NOT.LSAME(TRANS,'C'))) THEN
158 1 pfleura2
          INFO = 2
159 1 pfleura2
      ELSE IF (N.LT.0) THEN
160 1 pfleura2
          INFO = 3
161 1 pfleura2
      ELSE IF (K.LT.0) THEN
162 1 pfleura2
          INFO = 4
163 1 pfleura2
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
164 1 pfleura2
          INFO = 7
165 1 pfleura2
      ELSE IF (LDC.LT.MAX(1,N)) THEN
166 1 pfleura2
          INFO = 10
167 1 pfleura2
      END IF
168 1 pfleura2
      IF (INFO.NE.0) THEN
169 1 pfleura2
          CALL XERBLA('CHERK ',INFO)
170 1 pfleura2
          RETURN
171 1 pfleura2
      END IF
172 1 pfleura2
*
173 1 pfleura2
*     Quick return if possible.
174 1 pfleura2
*
175 1 pfleura2
      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
176 1 pfleura2
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
177 1 pfleura2
*
178 1 pfleura2
*     And when  alpha.eq.zero.
179 1 pfleura2
*
180 1 pfleura2
      IF (ALPHA.EQ.ZERO) THEN
181 1 pfleura2
          IF (UPPER) THEN
182 1 pfleura2
              IF (BETA.EQ.ZERO) THEN
183 1 pfleura2
                  DO 20 J = 1,N
184 1 pfleura2
                      DO 10 I = 1,J
185 1 pfleura2
                          C(I,J) = ZERO
186 1 pfleura2
   10                 CONTINUE
187 1 pfleura2
   20             CONTINUE
188 1 pfleura2
              ELSE
189 1 pfleura2
                  DO 40 J = 1,N
190 1 pfleura2
                      DO 30 I = 1,J - 1
191 1 pfleura2
                          C(I,J) = BETA*C(I,J)
192 1 pfleura2
   30                 CONTINUE
193 1 pfleura2
                      C(J,J) = BETA*REAL(C(J,J))
194 1 pfleura2
   40             CONTINUE
195 1 pfleura2
              END IF
196 1 pfleura2
          ELSE
197 1 pfleura2
              IF (BETA.EQ.ZERO) THEN
198 1 pfleura2
                  DO 60 J = 1,N
199 1 pfleura2
                      DO 50 I = J,N
200 1 pfleura2
                          C(I,J) = ZERO
201 1 pfleura2
   50                 CONTINUE
202 1 pfleura2
   60             CONTINUE
203 1 pfleura2
              ELSE
204 1 pfleura2
                  DO 80 J = 1,N
205 1 pfleura2
                      C(J,J) = BETA*REAL(C(J,J))
206 1 pfleura2
                      DO 70 I = J + 1,N
207 1 pfleura2
                          C(I,J) = BETA*C(I,J)
208 1 pfleura2
   70                 CONTINUE
209 1 pfleura2
   80             CONTINUE
210 1 pfleura2
              END IF
211 1 pfleura2
          END IF
212 1 pfleura2
          RETURN
213 1 pfleura2
      END IF
214 1 pfleura2
*
215 1 pfleura2
*     Start the operations.
216 1 pfleura2
*
217 1 pfleura2
      IF (LSAME(TRANS,'N')) THEN
218 1 pfleura2
*
219 1 pfleura2
*        Form  C := alpha*A*conjg( A' ) + beta*C.
220 1 pfleura2
*
221 1 pfleura2
          IF (UPPER) THEN
222 1 pfleura2
              DO 130 J = 1,N
223 1 pfleura2
                  IF (BETA.EQ.ZERO) THEN
224 1 pfleura2
                      DO 90 I = 1,J
225 1 pfleura2
                          C(I,J) = ZERO
226 1 pfleura2
   90                 CONTINUE
227 1 pfleura2
                  ELSE IF (BETA.NE.ONE) THEN
228 1 pfleura2
                      DO 100 I = 1,J - 1
229 1 pfleura2
                          C(I,J) = BETA*C(I,J)
230 1 pfleura2
  100                 CONTINUE
231 1 pfleura2
                      C(J,J) = BETA*REAL(C(J,J))
232 1 pfleura2
                  ELSE
233 1 pfleura2
                      C(J,J) = REAL(C(J,J))
234 1 pfleura2
                  END IF
235 1 pfleura2
                  DO 120 L = 1,K
236 1 pfleura2
                      IF (A(J,L).NE.CMPLX(ZERO)) THEN
237 1 pfleura2
                          TEMP = ALPHA*CONJG(A(J,L))
238 1 pfleura2
                          DO 110 I = 1,J - 1
239 1 pfleura2
                              C(I,J) = C(I,J) + TEMP*A(I,L)
240 1 pfleura2
  110                     CONTINUE
241 1 pfleura2
                          C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(I,L))
242 1 pfleura2
                      END IF
243 1 pfleura2
  120             CONTINUE
244 1 pfleura2
  130         CONTINUE
245 1 pfleura2
          ELSE
246 1 pfleura2
              DO 180 J = 1,N
247 1 pfleura2
                  IF (BETA.EQ.ZERO) THEN
248 1 pfleura2
                      DO 140 I = J,N
249 1 pfleura2
                          C(I,J) = ZERO
250 1 pfleura2
  140                 CONTINUE
251 1 pfleura2
                  ELSE IF (BETA.NE.ONE) THEN
252 1 pfleura2
                      C(J,J) = BETA*REAL(C(J,J))
253 1 pfleura2
                      DO 150 I = J + 1,N
254 1 pfleura2
                          C(I,J) = BETA*C(I,J)
255 1 pfleura2
  150                 CONTINUE
256 1 pfleura2
                  ELSE
257 1 pfleura2
                      C(J,J) = REAL(C(J,J))
258 1 pfleura2
                  END IF
259 1 pfleura2
                  DO 170 L = 1,K
260 1 pfleura2
                      IF (A(J,L).NE.CMPLX(ZERO)) THEN
261 1 pfleura2
                          TEMP = ALPHA*CONJG(A(J,L))
262 1 pfleura2
                          C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(J,L))
263 1 pfleura2
                          DO 160 I = J + 1,N
264 1 pfleura2
                              C(I,J) = C(I,J) + TEMP*A(I,L)
265 1 pfleura2
  160                     CONTINUE
266 1 pfleura2
                      END IF
267 1 pfleura2
  170             CONTINUE
268 1 pfleura2
  180         CONTINUE
269 1 pfleura2
          END IF
270 1 pfleura2
      ELSE
271 1 pfleura2
*
272 1 pfleura2
*        Form  C := alpha*conjg( A' )*A + beta*C.
273 1 pfleura2
*
274 1 pfleura2
          IF (UPPER) THEN
275 1 pfleura2
              DO 220 J = 1,N
276 1 pfleura2
                  DO 200 I = 1,J - 1
277 1 pfleura2
                      TEMP = ZERO
278 1 pfleura2
                      DO 190 L = 1,K
279 1 pfleura2
                          TEMP = TEMP + CONJG(A(L,I))*A(L,J)
280 1 pfleura2
  190                 CONTINUE
281 1 pfleura2
                      IF (BETA.EQ.ZERO) THEN
282 1 pfleura2
                          C(I,J) = ALPHA*TEMP
283 1 pfleura2
                      ELSE
284 1 pfleura2
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
285 1 pfleura2
                      END IF
286 1 pfleura2
  200             CONTINUE
287 1 pfleura2
                  RTEMP = ZERO
288 1 pfleura2
                  DO 210 L = 1,K
289 1 pfleura2
                      RTEMP = RTEMP + CONJG(A(L,J))*A(L,J)
290 1 pfleura2
  210             CONTINUE
291 1 pfleura2
                  IF (BETA.EQ.ZERO) THEN
292 1 pfleura2
                      C(J,J) = ALPHA*RTEMP
293 1 pfleura2
                  ELSE
294 1 pfleura2
                      C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))
295 1 pfleura2
                  END IF
296 1 pfleura2
  220         CONTINUE
297 1 pfleura2
          ELSE
298 1 pfleura2
              DO 260 J = 1,N
299 1 pfleura2
                  RTEMP = ZERO
300 1 pfleura2
                  DO 230 L = 1,K
301 1 pfleura2
                      RTEMP = RTEMP + CONJG(A(L,J))*A(L,J)
302 1 pfleura2
  230             CONTINUE
303 1 pfleura2
                  IF (BETA.EQ.ZERO) THEN
304 1 pfleura2
                      C(J,J) = ALPHA*RTEMP
305 1 pfleura2
                  ELSE
306 1 pfleura2
                      C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))
307 1 pfleura2
                  END IF
308 1 pfleura2
                  DO 250 I = J + 1,N
309 1 pfleura2
                      TEMP = ZERO
310 1 pfleura2
                      DO 240 L = 1,K
311 1 pfleura2
                          TEMP = TEMP + CONJG(A(L,I))*A(L,J)
312 1 pfleura2
  240                 CONTINUE
313 1 pfleura2
                      IF (BETA.EQ.ZERO) THEN
314 1 pfleura2
                          C(I,J) = ALPHA*TEMP
315 1 pfleura2
                      ELSE
316 1 pfleura2
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
317 1 pfleura2
                      END IF
318 1 pfleura2
  250             CONTINUE
319 1 pfleura2
  260         CONTINUE
320 1 pfleura2
          END IF
321 1 pfleura2
      END IF
322 1 pfleura2
*
323 1 pfleura2
      RETURN
324 1 pfleura2
*
325 1 pfleura2
*     End of CHERK .
326 1 pfleura2
*
327 1 pfleura2
      END