Statistiques
| Révision :

root / src / lapack / double / dlasr.f @ 10

Historique | Voir | Annoter | Télécharger (12,98 ko)

1
      SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
2
*
3
*  -- LAPACK auxiliary routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     November 2006
7
*
8
*     .. Scalar Arguments ..
9
      CHARACTER          DIRECT, PIVOT, SIDE
10
      INTEGER            LDA, M, N
11
*     ..
12
*     .. Array Arguments ..
13
      DOUBLE PRECISION   A( LDA, * ), C( * ), S( * )
14
*     ..
15
*
16
*  Purpose
17
*  =======
18
*
19
*  DLASR applies a sequence of plane rotations to a real matrix A,
20
*  from either the left or the right.
21
*  
22
*  When SIDE = 'L', the transformation takes the form
23
*  
24
*     A := P*A
25
*  
26
*  and when SIDE = 'R', the transformation takes the form
27
*  
28
*     A := A*P**T
29
*  
30
*  where P is an orthogonal matrix consisting of a sequence of z plane
31
*  rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
32
*  and P**T is the transpose of P.
33
*  
34
*  When DIRECT = 'F' (Forward sequence), then
35
*  
36
*     P = P(z-1) * ... * P(2) * P(1)
37
*  
38
*  and when DIRECT = 'B' (Backward sequence), then
39
*  
40
*     P = P(1) * P(2) * ... * P(z-1)
41
*  
42
*  where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
43
*  
44
*     R(k) = (  c(k)  s(k) )
45
*          = ( -s(k)  c(k) ).
46
*  
47
*  When PIVOT = 'V' (Variable pivot), the rotation is performed
48
*  for the plane (k,k+1), i.e., P(k) has the form
49
*  
50
*     P(k) = (  1                                            )
51
*            (       ...                                     )
52
*            (              1                                )
53
*            (                   c(k)  s(k)                  )
54
*            (                  -s(k)  c(k)                  )
55
*            (                                1              )
56
*            (                                     ...       )
57
*            (                                            1  )
58
*  
59
*  where R(k) appears as a rank-2 modification to the identity matrix in
60
*  rows and columns k and k+1.
61
*  
62
*  When PIVOT = 'T' (Top pivot), the rotation is performed for the
63
*  plane (1,k+1), so P(k) has the form
64
*  
65
*     P(k) = (  c(k)                    s(k)                 )
66
*            (         1                                     )
67
*            (              ...                              )
68
*            (                     1                         )
69
*            ( -s(k)                    c(k)                 )
70
*            (                                 1             )
71
*            (                                      ...      )
72
*            (                                             1 )
73
*  
74
*  where R(k) appears in rows and columns 1 and k+1.
75
*  
76
*  Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
77
*  performed for the plane (k,z), giving P(k) the form
78
*  
79
*     P(k) = ( 1                                             )
80
*            (      ...                                      )
81
*            (             1                                 )
82
*            (                  c(k)                    s(k) )
83
*            (                         1                     )
84
*            (                              ...              )
85
*            (                                     1         )
86
*            (                 -s(k)                    c(k) )
87
*  
88
*  where R(k) appears in rows and columns k and z.  The rotations are
89
*  performed without ever forming P(k) explicitly.
90
*
91
*  Arguments
92
*  =========
93
*
94
*  SIDE    (input) CHARACTER*1
95
*          Specifies whether the plane rotation matrix P is applied to
96
*          A on the left or the right.
97
*          = 'L':  Left, compute A := P*A
98
*          = 'R':  Right, compute A:= A*P**T
99
*
100
*  PIVOT   (input) CHARACTER*1
101
*          Specifies the plane for which P(k) is a plane rotation
102
*          matrix.
103
*          = 'V':  Variable pivot, the plane (k,k+1)
104
*          = 'T':  Top pivot, the plane (1,k+1)
105
*          = 'B':  Bottom pivot, the plane (k,z)
106
*
107
*  DIRECT  (input) CHARACTER*1
108
*          Specifies whether P is a forward or backward sequence of
109
*          plane rotations.
110
*          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
111
*          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
112
*
113
*  M       (input) INTEGER
114
*          The number of rows of the matrix A.  If m <= 1, an immediate
115
*          return is effected.
116
*
117
*  N       (input) INTEGER
118
*          The number of columns of the matrix A.  If n <= 1, an
119
*          immediate return is effected.
120
*
121
*  C       (input) DOUBLE PRECISION array, dimension
122
*                  (M-1) if SIDE = 'L'
123
*                  (N-1) if SIDE = 'R'
124
*          The cosines c(k) of the plane rotations.
125
*
126
*  S       (input) DOUBLE PRECISION array, dimension
127
*                  (M-1) if SIDE = 'L'
128
*                  (N-1) if SIDE = 'R'
129
*          The sines s(k) of the plane rotations.  The 2-by-2 plane
130
*          rotation part of the matrix P(k), R(k), has the form
131
*          R(k) = (  c(k)  s(k) )
132
*                 ( -s(k)  c(k) ).
133
*
134
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
135
*          The M-by-N matrix A.  On exit, A is overwritten by P*A if
136
*          SIDE = 'R' or by A*P**T if SIDE = 'L'.
137
*
138
*  LDA     (input) INTEGER
139
*          The leading dimension of the array A.  LDA >= max(1,M).
140
*
141
*  =====================================================================
142
*
143
*     .. Parameters ..
144
      DOUBLE PRECISION   ONE, ZERO
145
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
146
*     ..
147
*     .. Local Scalars ..
148
      INTEGER            I, INFO, J
149
      DOUBLE PRECISION   CTEMP, STEMP, TEMP
150
*     ..
151
*     .. External Functions ..
152
      LOGICAL            LSAME
153
      EXTERNAL           LSAME
154
*     ..
155
*     .. External Subroutines ..
156
      EXTERNAL           XERBLA
157
*     ..
158
*     .. Intrinsic Functions ..
159
      INTRINSIC          MAX
160
*     ..
161
*     .. Executable Statements ..
162
*
163
*     Test the input parameters
164
*
165
      INFO = 0
166
      IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
167
         INFO = 1
168
      ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
169
     $         'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
170
         INFO = 2
171
      ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
172
     $          THEN
173
         INFO = 3
174
      ELSE IF( M.LT.0 ) THEN
175
         INFO = 4
176
      ELSE IF( N.LT.0 ) THEN
177
         INFO = 5
178
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
179
         INFO = 9
180
      END IF
181
      IF( INFO.NE.0 ) THEN
182
         CALL XERBLA( 'DLASR ', INFO )
183
         RETURN
184
      END IF
185
*
186
*     Quick return if possible
187
*
188
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
189
     $   RETURN
190
      IF( LSAME( SIDE, 'L' ) ) THEN
191
*
192
*        Form  P * A
193
*
194
         IF( LSAME( PIVOT, 'V' ) ) THEN
195
            IF( LSAME( DIRECT, 'F' ) ) THEN
196
               DO 20 J = 1, M - 1
197
                  CTEMP = C( J )
198
                  STEMP = S( J )
199
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
200
                     DO 10 I = 1, N
201
                        TEMP = A( J+1, I )
202
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
203
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
204
   10                CONTINUE
205
                  END IF
206
   20          CONTINUE
207
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
208
               DO 40 J = M - 1, 1, -1
209
                  CTEMP = C( J )
210
                  STEMP = S( J )
211
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
212
                     DO 30 I = 1, N
213
                        TEMP = A( J+1, I )
214
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
215
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
216
   30                CONTINUE
217
                  END IF
218
   40          CONTINUE
219
            END IF
220
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
221
            IF( LSAME( DIRECT, 'F' ) ) THEN
222
               DO 60 J = 2, M
223
                  CTEMP = C( J-1 )
224
                  STEMP = S( J-1 )
225
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
226
                     DO 50 I = 1, N
227
                        TEMP = A( J, I )
228
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
229
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
230
   50                CONTINUE
231
                  END IF
232
   60          CONTINUE
233
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
234
               DO 80 J = M, 2, -1
235
                  CTEMP = C( J-1 )
236
                  STEMP = S( J-1 )
237
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
238
                     DO 70 I = 1, N
239
                        TEMP = A( J, I )
240
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
241
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
242
   70                CONTINUE
243
                  END IF
244
   80          CONTINUE
245
            END IF
246
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
247
            IF( LSAME( DIRECT, 'F' ) ) THEN
248
               DO 100 J = 1, M - 1
249
                  CTEMP = C( J )
250
                  STEMP = S( J )
251
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
252
                     DO 90 I = 1, N
253
                        TEMP = A( J, I )
254
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
255
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
256
   90                CONTINUE
257
                  END IF
258
  100          CONTINUE
259
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
260
               DO 120 J = M - 1, 1, -1
261
                  CTEMP = C( J )
262
                  STEMP = S( J )
263
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
264
                     DO 110 I = 1, N
265
                        TEMP = A( J, I )
266
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
267
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
268
  110                CONTINUE
269
                  END IF
270
  120          CONTINUE
271
            END IF
272
         END IF
273
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
274
*
275
*        Form A * P'
276
*
277
         IF( LSAME( PIVOT, 'V' ) ) THEN
278
            IF( LSAME( DIRECT, 'F' ) ) THEN
279
               DO 140 J = 1, N - 1
280
                  CTEMP = C( J )
281
                  STEMP = S( J )
282
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
283
                     DO 130 I = 1, M
284
                        TEMP = A( I, J+1 )
285
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
286
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
287
  130                CONTINUE
288
                  END IF
289
  140          CONTINUE
290
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
291
               DO 160 J = N - 1, 1, -1
292
                  CTEMP = C( J )
293
                  STEMP = S( J )
294
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
295
                     DO 150 I = 1, M
296
                        TEMP = A( I, J+1 )
297
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
298
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
299
  150                CONTINUE
300
                  END IF
301
  160          CONTINUE
302
            END IF
303
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
304
            IF( LSAME( DIRECT, 'F' ) ) THEN
305
               DO 180 J = 2, N
306
                  CTEMP = C( J-1 )
307
                  STEMP = S( J-1 )
308
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
309
                     DO 170 I = 1, M
310
                        TEMP = A( I, J )
311
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
312
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
313
  170                CONTINUE
314
                  END IF
315
  180          CONTINUE
316
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
317
               DO 200 J = N, 2, -1
318
                  CTEMP = C( J-1 )
319
                  STEMP = S( J-1 )
320
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
321
                     DO 190 I = 1, M
322
                        TEMP = A( I, J )
323
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
324
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
325
  190                CONTINUE
326
                  END IF
327
  200          CONTINUE
328
            END IF
329
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
330
            IF( LSAME( DIRECT, 'F' ) ) THEN
331
               DO 220 J = 1, N - 1
332
                  CTEMP = C( J )
333
                  STEMP = S( J )
334
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
335
                     DO 210 I = 1, M
336
                        TEMP = A( I, J )
337
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
338
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
339
  210                CONTINUE
340
                  END IF
341
  220          CONTINUE
342
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
343
               DO 240 J = N - 1, 1, -1
344
                  CTEMP = C( J )
345
                  STEMP = S( J )
346
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
347
                     DO 230 I = 1, M
348
                        TEMP = A( I, J )
349
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
350
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
351
  230                CONTINUE
352
                  END IF
353
  240          CONTINUE
354
            END IF
355
         END IF
356
      END IF
357
*
358
      RETURN
359
*
360
*     End of DLASR
361
*
362
      END