root / src / lapack / double / dlasr.f @ 10
Historique | Voir | Annoter | Télécharger (12,98 ko)
1 |
SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) |
---|---|
2 |
* |
3 |
* -- LAPACK auxiliary routine (version 3.2) -- |
4 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 |
* November 2006 |
7 |
* |
8 |
* .. Scalar Arguments .. |
9 |
CHARACTER DIRECT, PIVOT, SIDE |
10 |
INTEGER LDA, M, N |
11 |
* .. |
12 |
* .. Array Arguments .. |
13 |
DOUBLE PRECISION A( LDA, * ), C( * ), S( * ) |
14 |
* .. |
15 |
* |
16 |
* Purpose |
17 |
* ======= |
18 |
* |
19 |
* DLASR applies a sequence of plane rotations to a real matrix A, |
20 |
* from either the left or the right. |
21 |
* |
22 |
* When SIDE = 'L', the transformation takes the form |
23 |
* |
24 |
* A := P*A |
25 |
* |
26 |
* and when SIDE = 'R', the transformation takes the form |
27 |
* |
28 |
* A := A*P**T |
29 |
* |
30 |
* where P is an orthogonal matrix consisting of a sequence of z plane |
31 |
* rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', |
32 |
* and P**T is the transpose of P. |
33 |
* |
34 |
* When DIRECT = 'F' (Forward sequence), then |
35 |
* |
36 |
* P = P(z-1) * ... * P(2) * P(1) |
37 |
* |
38 |
* and when DIRECT = 'B' (Backward sequence), then |
39 |
* |
40 |
* P = P(1) * P(2) * ... * P(z-1) |
41 |
* |
42 |
* where P(k) is a plane rotation matrix defined by the 2-by-2 rotation |
43 |
* |
44 |
* R(k) = ( c(k) s(k) ) |
45 |
* = ( -s(k) c(k) ). |
46 |
* |
47 |
* When PIVOT = 'V' (Variable pivot), the rotation is performed |
48 |
* for the plane (k,k+1), i.e., P(k) has the form |
49 |
* |
50 |
* P(k) = ( 1 ) |
51 |
* ( ... ) |
52 |
* ( 1 ) |
53 |
* ( c(k) s(k) ) |
54 |
* ( -s(k) c(k) ) |
55 |
* ( 1 ) |
56 |
* ( ... ) |
57 |
* ( 1 ) |
58 |
* |
59 |
* where R(k) appears as a rank-2 modification to the identity matrix in |
60 |
* rows and columns k and k+1. |
61 |
* |
62 |
* When PIVOT = 'T' (Top pivot), the rotation is performed for the |
63 |
* plane (1,k+1), so P(k) has the form |
64 |
* |
65 |
* P(k) = ( c(k) s(k) ) |
66 |
* ( 1 ) |
67 |
* ( ... ) |
68 |
* ( 1 ) |
69 |
* ( -s(k) c(k) ) |
70 |
* ( 1 ) |
71 |
* ( ... ) |
72 |
* ( 1 ) |
73 |
* |
74 |
* where R(k) appears in rows and columns 1 and k+1. |
75 |
* |
76 |
* Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is |
77 |
* performed for the plane (k,z), giving P(k) the form |
78 |
* |
79 |
* P(k) = ( 1 ) |
80 |
* ( ... ) |
81 |
* ( 1 ) |
82 |
* ( c(k) s(k) ) |
83 |
* ( 1 ) |
84 |
* ( ... ) |
85 |
* ( 1 ) |
86 |
* ( -s(k) c(k) ) |
87 |
* |
88 |
* where R(k) appears in rows and columns k and z. The rotations are |
89 |
* performed without ever forming P(k) explicitly. |
90 |
* |
91 |
* Arguments |
92 |
* ========= |
93 |
* |
94 |
* SIDE (input) CHARACTER*1 |
95 |
* Specifies whether the plane rotation matrix P is applied to |
96 |
* A on the left or the right. |
97 |
* = 'L': Left, compute A := P*A |
98 |
* = 'R': Right, compute A:= A*P**T |
99 |
* |
100 |
* PIVOT (input) CHARACTER*1 |
101 |
* Specifies the plane for which P(k) is a plane rotation |
102 |
* matrix. |
103 |
* = 'V': Variable pivot, the plane (k,k+1) |
104 |
* = 'T': Top pivot, the plane (1,k+1) |
105 |
* = 'B': Bottom pivot, the plane (k,z) |
106 |
* |
107 |
* DIRECT (input) CHARACTER*1 |
108 |
* Specifies whether P is a forward or backward sequence of |
109 |
* plane rotations. |
110 |
* = 'F': Forward, P = P(z-1)*...*P(2)*P(1) |
111 |
* = 'B': Backward, P = P(1)*P(2)*...*P(z-1) |
112 |
* |
113 |
* M (input) INTEGER |
114 |
* The number of rows of the matrix A. If m <= 1, an immediate |
115 |
* return is effected. |
116 |
* |
117 |
* N (input) INTEGER |
118 |
* The number of columns of the matrix A. If n <= 1, an |
119 |
* immediate return is effected. |
120 |
* |
121 |
* C (input) DOUBLE PRECISION array, dimension |
122 |
* (M-1) if SIDE = 'L' |
123 |
* (N-1) if SIDE = 'R' |
124 |
* The cosines c(k) of the plane rotations. |
125 |
* |
126 |
* S (input) DOUBLE PRECISION array, dimension |
127 |
* (M-1) if SIDE = 'L' |
128 |
* (N-1) if SIDE = 'R' |
129 |
* The sines s(k) of the plane rotations. The 2-by-2 plane |
130 |
* rotation part of the matrix P(k), R(k), has the form |
131 |
* R(k) = ( c(k) s(k) ) |
132 |
* ( -s(k) c(k) ). |
133 |
* |
134 |
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
135 |
* The M-by-N matrix A. On exit, A is overwritten by P*A if |
136 |
* SIDE = 'R' or by A*P**T if SIDE = 'L'. |
137 |
* |
138 |
* LDA (input) INTEGER |
139 |
* The leading dimension of the array A. LDA >= max(1,M). |
140 |
* |
141 |
* ===================================================================== |
142 |
* |
143 |
* .. Parameters .. |
144 |
DOUBLE PRECISION ONE, ZERO |
145 |
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
146 |
* .. |
147 |
* .. Local Scalars .. |
148 |
INTEGER I, INFO, J |
149 |
DOUBLE PRECISION CTEMP, STEMP, TEMP |
150 |
* .. |
151 |
* .. External Functions .. |
152 |
LOGICAL LSAME |
153 |
EXTERNAL LSAME |
154 |
* .. |
155 |
* .. External Subroutines .. |
156 |
EXTERNAL XERBLA |
157 |
* .. |
158 |
* .. Intrinsic Functions .. |
159 |
INTRINSIC MAX |
160 |
* .. |
161 |
* .. Executable Statements .. |
162 |
* |
163 |
* Test the input parameters |
164 |
* |
165 |
INFO = 0 |
166 |
IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN |
167 |
INFO = 1 |
168 |
ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT, |
169 |
$ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN |
170 |
INFO = 2 |
171 |
ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) ) |
172 |
$ THEN |
173 |
INFO = 3 |
174 |
ELSE IF( M.LT.0 ) THEN |
175 |
INFO = 4 |
176 |
ELSE IF( N.LT.0 ) THEN |
177 |
INFO = 5 |
178 |
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN |
179 |
INFO = 9 |
180 |
END IF |
181 |
IF( INFO.NE.0 ) THEN |
182 |
CALL XERBLA( 'DLASR ', INFO ) |
183 |
RETURN |
184 |
END IF |
185 |
* |
186 |
* Quick return if possible |
187 |
* |
188 |
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) |
189 |
$ RETURN |
190 |
IF( LSAME( SIDE, 'L' ) ) THEN |
191 |
* |
192 |
* Form P * A |
193 |
* |
194 |
IF( LSAME( PIVOT, 'V' ) ) THEN |
195 |
IF( LSAME( DIRECT, 'F' ) ) THEN |
196 |
DO 20 J = 1, M - 1 |
197 |
CTEMP = C( J ) |
198 |
STEMP = S( J ) |
199 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
200 |
DO 10 I = 1, N |
201 |
TEMP = A( J+1, I ) |
202 |
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) |
203 |
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) |
204 |
10 CONTINUE |
205 |
END IF |
206 |
20 CONTINUE |
207 |
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN |
208 |
DO 40 J = M - 1, 1, -1 |
209 |
CTEMP = C( J ) |
210 |
STEMP = S( J ) |
211 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
212 |
DO 30 I = 1, N |
213 |
TEMP = A( J+1, I ) |
214 |
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) |
215 |
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) |
216 |
30 CONTINUE |
217 |
END IF |
218 |
40 CONTINUE |
219 |
END IF |
220 |
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN |
221 |
IF( LSAME( DIRECT, 'F' ) ) THEN |
222 |
DO 60 J = 2, M |
223 |
CTEMP = C( J-1 ) |
224 |
STEMP = S( J-1 ) |
225 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
226 |
DO 50 I = 1, N |
227 |
TEMP = A( J, I ) |
228 |
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) |
229 |
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) |
230 |
50 CONTINUE |
231 |
END IF |
232 |
60 CONTINUE |
233 |
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN |
234 |
DO 80 J = M, 2, -1 |
235 |
CTEMP = C( J-1 ) |
236 |
STEMP = S( J-1 ) |
237 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
238 |
DO 70 I = 1, N |
239 |
TEMP = A( J, I ) |
240 |
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) |
241 |
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) |
242 |
70 CONTINUE |
243 |
END IF |
244 |
80 CONTINUE |
245 |
END IF |
246 |
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN |
247 |
IF( LSAME( DIRECT, 'F' ) ) THEN |
248 |
DO 100 J = 1, M - 1 |
249 |
CTEMP = C( J ) |
250 |
STEMP = S( J ) |
251 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
252 |
DO 90 I = 1, N |
253 |
TEMP = A( J, I ) |
254 |
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP |
255 |
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP |
256 |
90 CONTINUE |
257 |
END IF |
258 |
100 CONTINUE |
259 |
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN |
260 |
DO 120 J = M - 1, 1, -1 |
261 |
CTEMP = C( J ) |
262 |
STEMP = S( J ) |
263 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
264 |
DO 110 I = 1, N |
265 |
TEMP = A( J, I ) |
266 |
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP |
267 |
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP |
268 |
110 CONTINUE |
269 |
END IF |
270 |
120 CONTINUE |
271 |
END IF |
272 |
END IF |
273 |
ELSE IF( LSAME( SIDE, 'R' ) ) THEN |
274 |
* |
275 |
* Form A * P' |
276 |
* |
277 |
IF( LSAME( PIVOT, 'V' ) ) THEN |
278 |
IF( LSAME( DIRECT, 'F' ) ) THEN |
279 |
DO 140 J = 1, N - 1 |
280 |
CTEMP = C( J ) |
281 |
STEMP = S( J ) |
282 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
283 |
DO 130 I = 1, M |
284 |
TEMP = A( I, J+1 ) |
285 |
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) |
286 |
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) |
287 |
130 CONTINUE |
288 |
END IF |
289 |
140 CONTINUE |
290 |
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN |
291 |
DO 160 J = N - 1, 1, -1 |
292 |
CTEMP = C( J ) |
293 |
STEMP = S( J ) |
294 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
295 |
DO 150 I = 1, M |
296 |
TEMP = A( I, J+1 ) |
297 |
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) |
298 |
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) |
299 |
150 CONTINUE |
300 |
END IF |
301 |
160 CONTINUE |
302 |
END IF |
303 |
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN |
304 |
IF( LSAME( DIRECT, 'F' ) ) THEN |
305 |
DO 180 J = 2, N |
306 |
CTEMP = C( J-1 ) |
307 |
STEMP = S( J-1 ) |
308 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
309 |
DO 170 I = 1, M |
310 |
TEMP = A( I, J ) |
311 |
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) |
312 |
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) |
313 |
170 CONTINUE |
314 |
END IF |
315 |
180 CONTINUE |
316 |
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN |
317 |
DO 200 J = N, 2, -1 |
318 |
CTEMP = C( J-1 ) |
319 |
STEMP = S( J-1 ) |
320 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
321 |
DO 190 I = 1, M |
322 |
TEMP = A( I, J ) |
323 |
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) |
324 |
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) |
325 |
190 CONTINUE |
326 |
END IF |
327 |
200 CONTINUE |
328 |
END IF |
329 |
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN |
330 |
IF( LSAME( DIRECT, 'F' ) ) THEN |
331 |
DO 220 J = 1, N - 1 |
332 |
CTEMP = C( J ) |
333 |
STEMP = S( J ) |
334 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
335 |
DO 210 I = 1, M |
336 |
TEMP = A( I, J ) |
337 |
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP |
338 |
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP |
339 |
210 CONTINUE |
340 |
END IF |
341 |
220 CONTINUE |
342 |
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN |
343 |
DO 240 J = N - 1, 1, -1 |
344 |
CTEMP = C( J ) |
345 |
STEMP = S( J ) |
346 |
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN |
347 |
DO 230 I = 1, M |
348 |
TEMP = A( I, J ) |
349 |
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP |
350 |
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP |
351 |
230 CONTINUE |
352 |
END IF |
353 |
240 CONTINUE |
354 |
END IF |
355 |
END IF |
356 |
END IF |
357 |
* |
358 |
RETURN |
359 |
* |
360 |
* End of DLASR |
361 |
* |
362 |
END |