Statistiques
| Révision :

root / src / lapack / double / dlasq3.f @ 10

Historique | Voir | Annoter | Télécharger (8,21 ko)

1
      SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
2
     $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
3
     $                   DN2, G, TAU )
4
*
5
*  -- LAPACK routine (version 3.2.2)                                    --
6
*
7
*  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
8
*  -- Laboratory and Beresford Parlett of the Univ. of California at  --
9
*  -- Berkeley                                                        --
10
*  -- June 2010                                                       --
11
*
12
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
13
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
14
*
15
*     .. Scalar Arguments ..
16
      LOGICAL            IEEE
17
      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
18
      DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
19
     $                   QMAX, SIGMA, TAU
20
*     ..
21
*     .. Array Arguments ..
22
      DOUBLE PRECISION   Z( * )
23
*     ..
24
*
25
*  Purpose
26
*  =======
27
*
28
*  DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
29
*  In case of failure it changes shifts, and tries again until output
30
*  is positive.
31
*
32
*  Arguments
33
*  =========
34
*
35
*  I0     (input) INTEGER
36
*         First index.
37
*
38
*  N0     (input/output) INTEGER
39
*         Last index.
40
*
41
*  Z      (input) DOUBLE PRECISION array, dimension ( 4*N )
42
*         Z holds the qd array.
43
*
44
*  PP     (input/output) INTEGER
45
*         PP=0 for ping, PP=1 for pong.
46
*         PP=2 indicates that flipping was applied to the Z array   
47
*         and that the initial tests for deflation should not be 
48
*         performed.
49
*
50
*  DMIN   (output) DOUBLE PRECISION
51
*         Minimum value of d.
52
*
53
*  SIGMA  (output) DOUBLE PRECISION
54
*         Sum of shifts used in current segment.
55
*
56
*  DESIG  (input/output) DOUBLE PRECISION
57
*         Lower order part of SIGMA
58
*
59
*  QMAX   (input) DOUBLE PRECISION
60
*         Maximum value of q.
61
*
62
*  NFAIL  (output) INTEGER
63
*         Number of times shift was too big.
64
*
65
*  ITER   (output) INTEGER
66
*         Number of iterations.
67
*
68
*  NDIV   (output) INTEGER
69
*         Number of divisions.
70
*
71
*  IEEE   (input) LOGICAL
72
*         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
73
*
74
*  TTYPE  (input/output) INTEGER
75
*         Shift type.
76
*
77
*  DMIN1  (input/output) DOUBLE PRECISION
78
*
79
*  DMIN2  (input/output) DOUBLE PRECISION
80
*
81
*  DN     (input/output) DOUBLE PRECISION
82
*
83
*  DN1    (input/output) DOUBLE PRECISION
84
*
85
*  DN2    (input/output) DOUBLE PRECISION
86
*
87
*  G      (input/output) DOUBLE PRECISION
88
*
89
*  TAU    (input/output) DOUBLE PRECISION
90
*
91
*         These are passed as arguments in order to save their values
92
*         between calls to DLASQ3.
93
*
94
*  =====================================================================
95
*
96
*     .. Parameters ..
97
      DOUBLE PRECISION   CBIAS
98
      PARAMETER          ( CBIAS = 1.50D0 )
99
      DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD
100
      PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
101
     $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
102
*     ..
103
*     .. Local Scalars ..
104
      INTEGER            IPN4, J4, N0IN, NN, TTYPE
105
      DOUBLE PRECISION   EPS, S, T, TEMP, TOL, TOL2
106
*     ..
107
*     .. External Subroutines ..
108
      EXTERNAL           DLASQ4, DLASQ5, DLASQ6
109
*     ..
110
*     .. External Function ..
111
      DOUBLE PRECISION   DLAMCH
112
      LOGICAL            DISNAN
113
      EXTERNAL           DISNAN, DLAMCH
114
*     ..
115
*     .. Intrinsic Functions ..
116
      INTRINSIC          ABS, MAX, MIN, SQRT
117
*     ..
118
*     .. Executable Statements ..
119
*
120
      N0IN = N0
121
      EPS = DLAMCH( 'Precision' )
122
      TOL = EPS*HUNDRD
123
      TOL2 = TOL**2
124
*
125
*     Check for deflation.
126
*
127
   10 CONTINUE
128
*
129
      IF( N0.LT.I0 )
130
     $   RETURN
131
      IF( N0.EQ.I0 )
132
     $   GO TO 20
133
      NN = 4*N0 + PP
134
      IF( N0.EQ.( I0+1 ) )
135
     $   GO TO 40
136
*
137
*     Check whether E(N0-1) is negligible, 1 eigenvalue.
138
*
139
      IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
140
     $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
141
     $   GO TO 30
142
*
143
   20 CONTINUE
144
*
145
      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
146
      N0 = N0 - 1
147
      GO TO 10
148
*
149
*     Check  whether E(N0-2) is negligible, 2 eigenvalues.
150
*
151
   30 CONTINUE
152
*
153
      IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
154
     $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
155
     $   GO TO 50
156
*
157
   40 CONTINUE
158
*
159
      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
160
         S = Z( NN-3 )
161
         Z( NN-3 ) = Z( NN-7 )
162
         Z( NN-7 ) = S
163
      END IF
164
      IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
165
         T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
166
         S = Z( NN-3 )*( Z( NN-5 ) / T )
167
         IF( S.LE.T ) THEN
168
            S = Z( NN-3 )*( Z( NN-5 ) /
169
     $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )
170
         ELSE
171
            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
172
         END IF
173
         T = Z( NN-7 ) + ( S+Z( NN-5 ) )
174
         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
175
         Z( NN-7 ) = T
176
      END IF
177
      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
178
      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
179
      N0 = N0 - 2
180
      GO TO 10
181
*
182
   50 CONTINUE
183
      IF( PP.EQ.2 ) 
184
     $   PP = 0
185
*
186
*     Reverse the qd-array, if warranted.
187
*
188
      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
189
         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
190
            IPN4 = 4*( I0+N0 )
191
            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
192
               TEMP = Z( J4-3 )
193
               Z( J4-3 ) = Z( IPN4-J4-3 )
194
               Z( IPN4-J4-3 ) = TEMP
195
               TEMP = Z( J4-2 )
196
               Z( J4-2 ) = Z( IPN4-J4-2 )
197
               Z( IPN4-J4-2 ) = TEMP
198
               TEMP = Z( J4-1 )
199
               Z( J4-1 ) = Z( IPN4-J4-5 )
200
               Z( IPN4-J4-5 ) = TEMP
201
               TEMP = Z( J4 )
202
               Z( J4 ) = Z( IPN4-J4-4 )
203
               Z( IPN4-J4-4 ) = TEMP
204
   60       CONTINUE
205
            IF( N0-I0.LE.4 ) THEN
206
               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
207
               Z( 4*N0-PP ) = Z( 4*I0-PP )
208
            END IF
209
            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
210
            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
211
     $                            Z( 4*I0+PP+3 ) )
212
            Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
213
     $                          Z( 4*I0-PP+4 ) )
214
            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
215
            DMIN = -ZERO
216
         END IF
217
      END IF
218
*
219
*     Choose a shift.
220
*
221
      CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
222
     $             DN2, TAU, TTYPE, G )
223
*
224
*     Call dqds until DMIN > 0.
225
*
226
   70 CONTINUE
227
*
228
      CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
229
     $             DN1, DN2, IEEE )
230
*
231
      NDIV = NDIV + ( N0-I0+2 )
232
      ITER = ITER + 1
233
*
234
*     Check status.
235
*
236
      IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN
237
*
238
*        Success.
239
*
240
         GO TO 90
241
*
242
      ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND. 
243
     $         Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
244
     $         ABS( DN ).LT.TOL*SIGMA ) THEN
245
*
246
*        Convergence hidden by negative DN.
247
*
248
         Z( 4*( N0-1 )-PP+2 ) = ZERO
249
         DMIN = ZERO
250
         GO TO 90
251
      ELSE IF( DMIN.LT.ZERO ) THEN
252
*
253
*        TAU too big. Select new TAU and try again.
254
*
255
         NFAIL = NFAIL + 1
256
         IF( TTYPE.LT.-22 ) THEN
257
*
258
*           Failed twice. Play it safe.
259
*
260
            TAU = ZERO
261
         ELSE IF( DMIN1.GT.ZERO ) THEN
262
*
263
*           Late failure. Gives excellent shift.
264
*
265
            TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
266
            TTYPE = TTYPE - 11
267
         ELSE
268
*
269
*           Early failure. Divide by 4.
270
*
271
            TAU = QURTR*TAU
272
            TTYPE = TTYPE - 12
273
         END IF
274
         GO TO 70
275
      ELSE IF( DISNAN( DMIN ) ) THEN
276
*
277
*        NaN.
278
*
279
         IF( TAU.EQ.ZERO ) THEN
280
            GO TO 80
281
         ELSE
282
            TAU = ZERO
283
            GO TO 70
284
         END IF
285
      ELSE
286
*            
287
*        Possible underflow. Play it safe.
288
*
289
         GO TO 80
290
      END IF
291
*
292
*     Risk of underflow.
293
*
294
   80 CONTINUE
295
      CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
296
      NDIV = NDIV + ( N0-I0+2 )
297
      ITER = ITER + 1
298
      TAU = ZERO
299
*
300
   90 CONTINUE
301
      IF( TAU.LT.SIGMA ) THEN
302
         DESIG = DESIG + TAU
303
         T = SIGMA + DESIG
304
         DESIG = DESIG - ( T-SIGMA )
305
      ELSE
306
         T = SIGMA + TAU
307
         DESIG = SIGMA - ( T-TAU ) + DESIG
308
      END IF
309
      SIGMA = T
310
*
311
      RETURN
312
*
313
*     End of DLASQ3
314
*
315
      END