Statistiques
| Révision :

root / src / lapack / double / dlasdq.f @ 10

Historique | Voir | Annoter | Télécharger (10,39 ko)

1
      SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
2
     $                   U, LDU, C, LDC, WORK, INFO )
3
*
4
*  -- LAPACK auxiliary routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          UPLO
11
      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
15
     $                   VT( LDVT, * ), WORK( * )
16
*     ..
17
*
18
*  Purpose
19
*  =======
20
*
21
*  DLASDQ computes the singular value decomposition (SVD) of a real
22
*  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
23
*  E, accumulating the transformations if desired. Letting B denote
24
*  the input bidiagonal matrix, the algorithm computes orthogonal
25
*  matrices Q and P such that B = Q * S * P' (P' denotes the transpose
26
*  of P). The singular values S are overwritten on D.
27
*
28
*  The input matrix U  is changed to U  * Q  if desired.
29
*  The input matrix VT is changed to P' * VT if desired.
30
*  The input matrix C  is changed to Q' * C  if desired.
31
*
32
*  See "Computing  Small Singular Values of Bidiagonal Matrices With
33
*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
34
*  LAPACK Working Note #3, for a detailed description of the algorithm.
35
*
36
*  Arguments
37
*  =========
38
*
39
*  UPLO  (input) CHARACTER*1
40
*        On entry, UPLO specifies whether the input bidiagonal matrix
41
*        is upper or lower bidiagonal, and wether it is square are
42
*        not.
43
*           UPLO = 'U' or 'u'   B is upper bidiagonal.
44
*           UPLO = 'L' or 'l'   B is lower bidiagonal.
45
*
46
*  SQRE  (input) INTEGER
47
*        = 0: then the input matrix is N-by-N.
48
*        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
49
*             (N+1)-by-N if UPLU = 'L'.
50
*
51
*        The bidiagonal matrix has
52
*        N = NL + NR + 1 rows and
53
*        M = N + SQRE >= N columns.
54
*
55
*  N     (input) INTEGER
56
*        On entry, N specifies the number of rows and columns
57
*        in the matrix. N must be at least 0.
58
*
59
*  NCVT  (input) INTEGER
60
*        On entry, NCVT specifies the number of columns of
61
*        the matrix VT. NCVT must be at least 0.
62
*
63
*  NRU   (input) INTEGER
64
*        On entry, NRU specifies the number of rows of
65
*        the matrix U. NRU must be at least 0.
66
*
67
*  NCC   (input) INTEGER
68
*        On entry, NCC specifies the number of columns of
69
*        the matrix C. NCC must be at least 0.
70
*
71
*  D     (input/output) DOUBLE PRECISION array, dimension (N)
72
*        On entry, D contains the diagonal entries of the
73
*        bidiagonal matrix whose SVD is desired. On normal exit,
74
*        D contains the singular values in ascending order.
75
*
76
*  E     (input/output) DOUBLE PRECISION array.
77
*        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
78
*        On entry, the entries of E contain the offdiagonal entries
79
*        of the bidiagonal matrix whose SVD is desired. On normal
80
*        exit, E will contain 0. If the algorithm does not converge,
81
*        D and E will contain the diagonal and superdiagonal entries
82
*        of a bidiagonal matrix orthogonally equivalent to the one
83
*        given as input.
84
*
85
*  VT    (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
86
*        On entry, contains a matrix which on exit has been
87
*        premultiplied by P', dimension N-by-NCVT if SQRE = 0
88
*        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
89
*
90
*  LDVT  (input) INTEGER
91
*        On entry, LDVT specifies the leading dimension of VT as
92
*        declared in the calling (sub) program. LDVT must be at
93
*        least 1. If NCVT is nonzero LDVT must also be at least N.
94
*
95
*  U     (input/output) DOUBLE PRECISION array, dimension (LDU, N)
96
*        On entry, contains a  matrix which on exit has been
97
*        postmultiplied by Q, dimension NRU-by-N if SQRE = 0
98
*        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
99
*
100
*  LDU   (input) INTEGER
101
*        On entry, LDU  specifies the leading dimension of U as
102
*        declared in the calling (sub) program. LDU must be at
103
*        least max( 1, NRU ) .
104
*
105
*  C     (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
106
*        On entry, contains an N-by-NCC matrix which on exit
107
*        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0
108
*        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
109
*
110
*  LDC   (input) INTEGER
111
*        On entry, LDC  specifies the leading dimension of C as
112
*        declared in the calling (sub) program. LDC must be at
113
*        least 1. If NCC is nonzero, LDC must also be at least N.
114
*
115
*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N)
116
*        Workspace. Only referenced if one of NCVT, NRU, or NCC is
117
*        nonzero, and if N is at least 2.
118
*
119
*  INFO  (output) INTEGER
120
*        On exit, a value of 0 indicates a successful exit.
121
*        If INFO < 0, argument number -INFO is illegal.
122
*        If INFO > 0, the algorithm did not converge, and INFO
123
*        specifies how many superdiagonals did not converge.
124
*
125
*  Further Details
126
*  ===============
127
*
128
*  Based on contributions by
129
*     Ming Gu and Huan Ren, Computer Science Division, University of
130
*     California at Berkeley, USA
131
*
132
*  =====================================================================
133
*
134
*     .. Parameters ..
135
      DOUBLE PRECISION   ZERO
136
      PARAMETER          ( ZERO = 0.0D+0 )
137
*     ..
138
*     .. Local Scalars ..
139
      LOGICAL            ROTATE
140
      INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1
141
      DOUBLE PRECISION   CS, R, SMIN, SN
142
*     ..
143
*     .. External Subroutines ..
144
      EXTERNAL           DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
145
*     ..
146
*     .. External Functions ..
147
      LOGICAL            LSAME
148
      EXTERNAL           LSAME
149
*     ..
150
*     .. Intrinsic Functions ..
151
      INTRINSIC          MAX
152
*     ..
153
*     .. Executable Statements ..
154
*
155
*     Test the input parameters.
156
*
157
      INFO = 0
158
      IUPLO = 0
159
      IF( LSAME( UPLO, 'U' ) )
160
     $   IUPLO = 1
161
      IF( LSAME( UPLO, 'L' ) )
162
     $   IUPLO = 2
163
      IF( IUPLO.EQ.0 ) THEN
164
         INFO = -1
165
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
166
         INFO = -2
167
      ELSE IF( N.LT.0 ) THEN
168
         INFO = -3
169
      ELSE IF( NCVT.LT.0 ) THEN
170
         INFO = -4
171
      ELSE IF( NRU.LT.0 ) THEN
172
         INFO = -5
173
      ELSE IF( NCC.LT.0 ) THEN
174
         INFO = -6
175
      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
176
     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
177
         INFO = -10
178
      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
179
         INFO = -12
180
      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
181
     $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
182
         INFO = -14
183
      END IF
184
      IF( INFO.NE.0 ) THEN
185
         CALL XERBLA( 'DLASDQ', -INFO )
186
         RETURN
187
      END IF
188
      IF( N.EQ.0 )
189
     $   RETURN
190
*
191
*     ROTATE is true if any singular vectors desired, false otherwise
192
*
193
      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
194
      NP1 = N + 1
195
      SQRE1 = SQRE
196
*
197
*     If matrix non-square upper bidiagonal, rotate to be lower
198
*     bidiagonal.  The rotations are on the right.
199
*
200
      IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
201
         DO 10 I = 1, N - 1
202
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
203
            D( I ) = R
204
            E( I ) = SN*D( I+1 )
205
            D( I+1 ) = CS*D( I+1 )
206
            IF( ROTATE ) THEN
207
               WORK( I ) = CS
208
               WORK( N+I ) = SN
209
            END IF
210
   10    CONTINUE
211
         CALL DLARTG( D( N ), E( N ), CS, SN, R )
212
         D( N ) = R
213
         E( N ) = ZERO
214
         IF( ROTATE ) THEN
215
            WORK( N ) = CS
216
            WORK( N+N ) = SN
217
         END IF
218
         IUPLO = 2
219
         SQRE1 = 0
220
*
221
*        Update singular vectors if desired.
222
*
223
         IF( NCVT.GT.0 )
224
     $      CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
225
     $                  WORK( NP1 ), VT, LDVT )
226
      END IF
227
*
228
*     If matrix lower bidiagonal, rotate to be upper bidiagonal
229
*     by applying Givens rotations on the left.
230
*
231
      IF( IUPLO.EQ.2 ) THEN
232
         DO 20 I = 1, N - 1
233
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
234
            D( I ) = R
235
            E( I ) = SN*D( I+1 )
236
            D( I+1 ) = CS*D( I+1 )
237
            IF( ROTATE ) THEN
238
               WORK( I ) = CS
239
               WORK( N+I ) = SN
240
            END IF
241
   20    CONTINUE
242
*
243
*        If matrix (N+1)-by-N lower bidiagonal, one additional
244
*        rotation is needed.
245
*
246
         IF( SQRE1.EQ.1 ) THEN
247
            CALL DLARTG( D( N ), E( N ), CS, SN, R )
248
            D( N ) = R
249
            IF( ROTATE ) THEN
250
               WORK( N ) = CS
251
               WORK( N+N ) = SN
252
            END IF
253
         END IF
254
*
255
*        Update singular vectors if desired.
256
*
257
         IF( NRU.GT.0 ) THEN
258
            IF( SQRE1.EQ.0 ) THEN
259
               CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
260
     $                     WORK( NP1 ), U, LDU )
261
            ELSE
262
               CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
263
     $                     WORK( NP1 ), U, LDU )
264
            END IF
265
         END IF
266
         IF( NCC.GT.0 ) THEN
267
            IF( SQRE1.EQ.0 ) THEN
268
               CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
269
     $                     WORK( NP1 ), C, LDC )
270
            ELSE
271
               CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
272
     $                     WORK( NP1 ), C, LDC )
273
            END IF
274
         END IF
275
      END IF
276
*
277
*     Call DBDSQR to compute the SVD of the reduced real
278
*     N-by-N upper bidiagonal matrix.
279
*
280
      CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
281
     $             LDC, WORK, INFO )
282
*
283
*     Sort the singular values into ascending order (insertion sort on
284
*     singular values, but only one transposition per singular vector)
285
*
286
      DO 40 I = 1, N
287
*
288
*        Scan for smallest D(I).
289
*
290
         ISUB = I
291
         SMIN = D( I )
292
         DO 30 J = I + 1, N
293
            IF( D( J ).LT.SMIN ) THEN
294
               ISUB = J
295
               SMIN = D( J )
296
            END IF
297
   30    CONTINUE
298
         IF( ISUB.NE.I ) THEN
299
*
300
*           Swap singular values and vectors.
301
*
302
            D( ISUB ) = D( I )
303
            D( I ) = SMIN
304
            IF( NCVT.GT.0 )
305
     $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
306
            IF( NRU.GT.0 )
307
     $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
308
            IF( NCC.GT.0 )
309
     $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
310
         END IF
311
   40 CONTINUE
312
*
313
      RETURN
314
*
315
*     End of DLASDQ
316
*
317
      END