Statistiques
| Révision :

root / src / lapack / double / dlarft.f @ 10

Historique | Voir | Annoter | Télécharger (8,3 ko)

1
      SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
2
      IMPLICIT NONE
3
*
4
*  -- LAPACK auxiliary routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          DIRECT, STOREV
11
      INTEGER            K, LDT, LDV, N
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DLARFT forms the triangular factor T of a real block reflector H
21
*  of order n, which is defined as a product of k elementary reflectors.
22
*
23
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
24
*
25
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
26
*
27
*  If STOREV = 'C', the vector which defines the elementary reflector
28
*  H(i) is stored in the i-th column of the array V, and
29
*
30
*     H  =  I - V * T * V'
31
*
32
*  If STOREV = 'R', the vector which defines the elementary reflector
33
*  H(i) is stored in the i-th row of the array V, and
34
*
35
*     H  =  I - V' * T * V
36
*
37
*  Arguments
38
*  =========
39
*
40
*  DIRECT  (input) CHARACTER*1
41
*          Specifies the order in which the elementary reflectors are
42
*          multiplied to form the block reflector:
43
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
44
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
45
*
46
*  STOREV  (input) CHARACTER*1
47
*          Specifies how the vectors which define the elementary
48
*          reflectors are stored (see also Further Details):
49
*          = 'C': columnwise
50
*          = 'R': rowwise
51
*
52
*  N       (input) INTEGER
53
*          The order of the block reflector H. N >= 0.
54
*
55
*  K       (input) INTEGER
56
*          The order of the triangular factor T (= the number of
57
*          elementary reflectors). K >= 1.
58
*
59
*  V       (input/output) DOUBLE PRECISION array, dimension
60
*                               (LDV,K) if STOREV = 'C'
61
*                               (LDV,N) if STOREV = 'R'
62
*          The matrix V. See further details.
63
*
64
*  LDV     (input) INTEGER
65
*          The leading dimension of the array V.
66
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
67
*
68
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
69
*          TAU(i) must contain the scalar factor of the elementary
70
*          reflector H(i).
71
*
72
*  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
73
*          The k by k triangular factor T of the block reflector.
74
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
75
*          lower triangular. The rest of the array is not used.
76
*
77
*  LDT     (input) INTEGER
78
*          The leading dimension of the array T. LDT >= K.
79
*
80
*  Further Details
81
*  ===============
82
*
83
*  The shape of the matrix V and the storage of the vectors which define
84
*  the H(i) is best illustrated by the following example with n = 5 and
85
*  k = 3. The elements equal to 1 are not stored; the corresponding
86
*  array elements are modified but restored on exit. The rest of the
87
*  array is not used.
88
*
89
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
90
*
91
*               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
92
*                   ( v1  1    )                     (     1 v2 v2 v2 )
93
*                   ( v1 v2  1 )                     (        1 v3 v3 )
94
*                   ( v1 v2 v3 )
95
*                   ( v1 v2 v3 )
96
*
97
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
98
*
99
*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
100
*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
101
*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
102
*                   (     1 v3 )
103
*                   (        1 )
104
*
105
*  =====================================================================
106
*
107
*     .. Parameters ..
108
      DOUBLE PRECISION   ONE, ZERO
109
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
110
*     ..
111
*     .. Local Scalars ..
112
      INTEGER            I, J, PREVLASTV, LASTV
113
      DOUBLE PRECISION   VII
114
*     ..
115
*     .. External Subroutines ..
116
      EXTERNAL           DGEMV, DTRMV
117
*     ..
118
*     .. External Functions ..
119
      LOGICAL            LSAME
120
      EXTERNAL           LSAME
121
*     ..
122
*     .. Executable Statements ..
123
*
124
*     Quick return if possible
125
*
126
      IF( N.EQ.0 )
127
     $   RETURN
128
*
129
      IF( LSAME( DIRECT, 'F' ) ) THEN
130
         PREVLASTV = N
131
         DO 20 I = 1, K
132
            PREVLASTV = MAX( I, PREVLASTV )
133
            IF( TAU( I ).EQ.ZERO ) THEN
134
*
135
*              H(i)  =  I
136
*
137
               DO 10 J = 1, I
138
                  T( J, I ) = ZERO
139
   10          CONTINUE
140
            ELSE
141
*
142
*              general case
143
*
144
               VII = V( I, I )
145
               V( I, I ) = ONE
146
               IF( LSAME( STOREV, 'C' ) ) THEN
147
!                 Skip any trailing zeros.
148
                  DO LASTV = N, I+1, -1
149
                     IF( V( LASTV, I ).NE.ZERO ) EXIT
150
                  END DO
151
                  J = MIN( LASTV, PREVLASTV )
152
*
153
*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)' * V(i:j,i)
154
*
155
                  CALL DGEMV( 'Transpose', J-I+1, I-1, -TAU( I ),
156
     $                        V( I, 1 ), LDV, V( I, I ), 1, ZERO,
157
     $                        T( 1, I ), 1 )
158
               ELSE
159
!                 Skip any trailing zeros.
160
                  DO LASTV = N, I+1, -1
161
                     IF( V( I, LASTV ).NE.ZERO ) EXIT
162
                  END DO
163
                  J = MIN( LASTV, PREVLASTV )
164
*
165
*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)'
166
*
167
                  CALL DGEMV( 'No transpose', I-1, J-I+1, -TAU( I ),
168
     $                        V( 1, I ), LDV, V( I, I ), LDV, ZERO,
169
     $                        T( 1, I ), 1 )
170
               END IF
171
               V( I, I ) = VII
172
*
173
*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
174
*
175
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
176
     $                     LDT, T( 1, I ), 1 )
177
               T( I, I ) = TAU( I )
178
               IF( I.GT.1 ) THEN
179
                  PREVLASTV = MAX( PREVLASTV, LASTV )
180
               ELSE
181
                  PREVLASTV = LASTV
182
               END IF
183
            END IF
184
   20    CONTINUE
185
      ELSE
186
         PREVLASTV = 1
187
         DO 40 I = K, 1, -1
188
            IF( TAU( I ).EQ.ZERO ) THEN
189
*
190
*              H(i)  =  I
191
*
192
               DO 30 J = I, K
193
                  T( J, I ) = ZERO
194
   30          CONTINUE
195
            ELSE
196
*
197
*              general case
198
*
199
               IF( I.LT.K ) THEN
200
                  IF( LSAME( STOREV, 'C' ) ) THEN
201
                     VII = V( N-K+I, I )
202
                     V( N-K+I, I ) = ONE
203
!                    Skip any leading zeros.
204
                     DO LASTV = 1, I-1
205
                        IF( V( LASTV, I ).NE.ZERO ) EXIT
206
                     END DO
207
                     J = MAX( LASTV, PREVLASTV )
208
*
209
*                    T(i+1:k,i) :=
210
*                            - tau(i) * V(j:n-k+i,i+1:k)' * V(j:n-k+i,i)
211
*
212
                     CALL DGEMV( 'Transpose', N-K+I-J+1, K-I, -TAU( I ),
213
     $                           V( J, I+1 ), LDV, V( J, I ), 1, ZERO,
214
     $                           T( I+1, I ), 1 )
215
                     V( N-K+I, I ) = VII
216
                  ELSE
217
                     VII = V( I, N-K+I )
218
                     V( I, N-K+I ) = ONE
219
!                    Skip any leading zeros.
220
                     DO LASTV = 1, I-1
221
                        IF( V( I, LASTV ).NE.ZERO ) EXIT
222
                     END DO
223
                     J = MAX( LASTV, PREVLASTV )
224
*
225
*                    T(i+1:k,i) :=
226
*                            - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)'
227
*
228
                     CALL DGEMV( 'No transpose', K-I, N-K+I-J+1,
229
     $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
230
     $                    ZERO, T( I+1, I ), 1 )
231
                     V( I, N-K+I ) = VII
232
                  END IF
233
*
234
*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
235
*
236
                  CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
237
     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
238
                  IF( I.GT.1 ) THEN
239
                     PREVLASTV = MIN( PREVLASTV, LASTV )
240
                  ELSE
241
                     PREVLASTV = LASTV
242
                  END IF
243
               END IF
244
               T( I, I ) = TAU( I )
245
            END IF
246
   40    CONTINUE
247
      END IF
248
      RETURN
249
*
250
*     End of DLARFT
251
*
252
      END