Statistiques
| Révision :

root / src / lapack / double / dlarf.f @ 10

Historique | Voir | Annoter | Télécharger (4,34 ko)

1
      SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
2
      IMPLICIT NONE
3
*
4
*  -- LAPACK auxiliary routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          SIDE
11
      INTEGER            INCV, LDC, M, N
12
      DOUBLE PRECISION   TAU
13
*     ..
14
*     .. Array Arguments ..
15
      DOUBLE PRECISION   C( LDC, * ), V( * ), WORK( * )
16
*     ..
17
*
18
*  Purpose
19
*  =======
20
*
21
*  DLARF applies a real elementary reflector H to a real m by n matrix
22
*  C, from either the left or the right. H is represented in the form
23
*
24
*        H = I - tau * v * v'
25
*
26
*  where tau is a real scalar and v is a real vector.
27
*
28
*  If tau = 0, then H is taken to be the unit matrix.
29
*
30
*  Arguments
31
*  =========
32
*
33
*  SIDE    (input) CHARACTER*1
34
*          = 'L': form  H * C
35
*          = 'R': form  C * H
36
*
37
*  M       (input) INTEGER
38
*          The number of rows of the matrix C.
39
*
40
*  N       (input) INTEGER
41
*          The number of columns of the matrix C.
42
*
43
*  V       (input) DOUBLE PRECISION array, dimension
44
*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'
45
*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
46
*          The vector v in the representation of H. V is not used if
47
*          TAU = 0.
48
*
49
*  INCV    (input) INTEGER
50
*          The increment between elements of v. INCV <> 0.
51
*
52
*  TAU     (input) DOUBLE PRECISION
53
*          The value tau in the representation of H.
54
*
55
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
56
*          On entry, the m by n matrix C.
57
*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
58
*          or C * H if SIDE = 'R'.
59
*
60
*  LDC     (input) INTEGER
61
*          The leading dimension of the array C. LDC >= max(1,M).
62
*
63
*  WORK    (workspace) DOUBLE PRECISION array, dimension
64
*                         (N) if SIDE = 'L'
65
*                      or (M) if SIDE = 'R'
66
*
67
*  =====================================================================
68
*
69
*     .. Parameters ..
70
      DOUBLE PRECISION   ONE, ZERO
71
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
72
*     ..
73
*     .. Local Scalars ..
74
      LOGICAL            APPLYLEFT
75
      INTEGER            I, LASTV, LASTC
76
*     ..
77
*     .. External Subroutines ..
78
      EXTERNAL           DGEMV, DGER
79
*     ..
80
*     .. External Functions ..
81
      LOGICAL            LSAME
82
      INTEGER            ILADLR, ILADLC
83
      EXTERNAL           LSAME, ILADLR, ILADLC
84
*     ..
85
*     .. Executable Statements ..
86
*
87
      APPLYLEFT = LSAME( SIDE, 'L' )
88
      LASTV = 0
89
      LASTC = 0
90
      IF( TAU.NE.ZERO ) THEN
91
!     Set up variables for scanning V.  LASTV begins pointing to the end
92
!     of V.
93
         IF( APPLYLEFT ) THEN
94
            LASTV = M
95
         ELSE
96
            LASTV = N
97
         END IF
98
         IF( INCV.GT.0 ) THEN
99
            I = 1 + (LASTV-1) * INCV
100
         ELSE
101
            I = 1
102
         END IF
103
!     Look for the last non-zero row in V.
104
         DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
105
            LASTV = LASTV - 1
106
            I = I - INCV
107
         END DO
108
         IF( APPLYLEFT ) THEN
109
!     Scan for the last non-zero column in C(1:lastv,:).
110
            LASTC = ILADLC(LASTV, N, C, LDC)
111
         ELSE
112
!     Scan for the last non-zero row in C(:,1:lastv).
113
            LASTC = ILADLR(M, LASTV, C, LDC)
114
         END IF
115
      END IF
116
!     Note that lastc.eq.0 renders the BLAS operations null; no special
117
!     case is needed at this level.
118
      IF( APPLYLEFT ) THEN
119
*
120
*        Form  H * C
121
*
122
         IF( LASTV.GT.0 ) THEN
123
*
124
*           w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1)
125
*
126
            CALL DGEMV( 'Transpose', LASTV, LASTC, ONE, C, LDC, V, INCV,
127
     $           ZERO, WORK, 1 )
128
*
129
*           C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)'
130
*
131
            CALL DGER( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
132
         END IF
133
      ELSE
134
*
135
*        Form  C * H
136
*
137
         IF( LASTV.GT.0 ) THEN
138
*
139
*           w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
140
*
141
            CALL DGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
142
     $           V, INCV, ZERO, WORK, 1 )
143
*
144
*           C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)'
145
*
146
            CALL DGER( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
147
         END IF
148
      END IF
149
      RETURN
150
*
151
*     End of DLARF
152
*
153
      END