Statistiques
| Révision :

root / src / lapack / double / dlaqps.f @ 10

Historique | Voir | Annoter | Télécharger (8,08 ko)

1
      SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
2
     $                   VN2, AUXV, F, LDF )
3
*
4
*  -- LAPACK auxiliary routine (version 3.2.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     June 2010
8
*
9
*     .. Scalar Arguments ..
10
      INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
11
*     ..
12
*     .. Array Arguments ..
13
      INTEGER            JPVT( * )
14
      DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
15
     $                   VN1( * ), VN2( * )
16
*     ..
17
*
18
*  Purpose
19
*  =======
20
*
21
*  DLAQPS computes a step of QR factorization with column pivoting
22
*  of a real M-by-N matrix A by using Blas-3.  It tries to factorize
23
*  NB columns from A starting from the row OFFSET+1, and updates all
24
*  of the matrix with Blas-3 xGEMM.
25
*
26
*  In some cases, due to catastrophic cancellations, it cannot
27
*  factorize NB columns.  Hence, the actual number of factorized
28
*  columns is returned in KB.
29
*
30
*  Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
31
*
32
*  Arguments
33
*  =========
34
*
35
*  M       (input) INTEGER
36
*          The number of rows of the matrix A. M >= 0.
37
*
38
*  N       (input) INTEGER
39
*          The number of columns of the matrix A. N >= 0
40
*
41
*  OFFSET  (input) INTEGER
42
*          The number of rows of A that have been factorized in
43
*          previous steps.
44
*
45
*  NB      (input) INTEGER
46
*          The number of columns to factorize.
47
*
48
*  KB      (output) INTEGER
49
*          The number of columns actually factorized.
50
*
51
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
52
*          On entry, the M-by-N matrix A.
53
*          On exit, block A(OFFSET+1:M,1:KB) is the triangular
54
*          factor obtained and block A(1:OFFSET,1:N) has been
55
*          accordingly pivoted, but no factorized.
56
*          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
57
*          been updated.
58
*
59
*  LDA     (input) INTEGER
60
*          The leading dimension of the array A. LDA >= max(1,M).
61
*
62
*  JPVT    (input/output) INTEGER array, dimension (N)
63
*          JPVT(I) = K <==> Column K of the full matrix A has been
64
*          permuted into position I in AP.
65
*
66
*  TAU     (output) DOUBLE PRECISION array, dimension (KB)
67
*          The scalar factors of the elementary reflectors.
68
*
69
*  VN1     (input/output) DOUBLE PRECISION array, dimension (N)
70
*          The vector with the partial column norms.
71
*
72
*  VN2     (input/output) DOUBLE PRECISION array, dimension (N)
73
*          The vector with the exact column norms.
74
*
75
*  AUXV    (input/output) DOUBLE PRECISION array, dimension (NB)
76
*          Auxiliar vector.
77
*
78
*  F       (input/output) DOUBLE PRECISION array, dimension (LDF,NB)
79
*          Matrix F' = L*Y'*A.
80
*
81
*  LDF     (input) INTEGER
82
*          The leading dimension of the array F. LDF >= max(1,N).
83
*
84
*  Further Details
85
*  ===============
86
*
87
*  Based on contributions by
88
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
89
*    X. Sun, Computer Science Dept., Duke University, USA
90
*
91
*  Partial column norm updating strategy modified by
92
*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
93
*    University of Zagreb, Croatia.
94
*     June 2010
95
*  For more details see LAPACK Working Note 176.
96
*  =====================================================================
97
*
98
*     .. Parameters ..
99
      DOUBLE PRECISION   ZERO, ONE
100
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
101
*     ..
102
*     .. Local Scalars ..
103
      INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
104
      DOUBLE PRECISION   AKK, TEMP, TEMP2, TOL3Z
105
*     ..
106
*     .. External Subroutines ..
107
      EXTERNAL           DGEMM, DGEMV, DLARFG, DSWAP
108
*     ..
109
*     .. Intrinsic Functions ..
110
      INTRINSIC          ABS, DBLE, MAX, MIN, NINT, SQRT
111
*     ..
112
*     .. External Functions ..
113
      INTEGER            IDAMAX
114
      DOUBLE PRECISION   DLAMCH, DNRM2
115
      EXTERNAL           IDAMAX, DLAMCH, DNRM2
116
*     ..
117
*     .. Executable Statements ..
118
*
119
      LASTRK = MIN( M, N+OFFSET )
120
      LSTICC = 0
121
      K = 0
122
      TOL3Z = SQRT(DLAMCH('Epsilon'))
123
*
124
*     Beginning of while loop.
125
*
126
   10 CONTINUE
127
      IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
128
         K = K + 1
129
         RK = OFFSET + K
130
*
131
*        Determine ith pivot column and swap if necessary
132
*
133
         PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
134
         IF( PVT.NE.K ) THEN
135
            CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
136
            CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
137
            ITEMP = JPVT( PVT )
138
            JPVT( PVT ) = JPVT( K )
139
            JPVT( K ) = ITEMP
140
            VN1( PVT ) = VN1( K )
141
            VN2( PVT ) = VN2( K )
142
         END IF
143
*
144
*        Apply previous Householder reflectors to column K:
145
*        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
146
*
147
         IF( K.GT.1 ) THEN
148
            CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
149
     $                  LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
150
         END IF
151
*
152
*        Generate elementary reflector H(k).
153
*
154
         IF( RK.LT.M ) THEN
155
            CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
156
         ELSE
157
            CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
158
         END IF
159
*
160
         AKK = A( RK, K )
161
         A( RK, K ) = ONE
162
*
163
*        Compute Kth column of F:
164
*
165
*        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K).
166
*
167
         IF( K.LT.N ) THEN
168
            CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
169
     $                  A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
170
     $                  F( K+1, K ), 1 )
171
         END IF
172
*
173
*        Padding F(1:K,K) with zeros.
174
*
175
         DO 20 J = 1, K
176
            F( J, K ) = ZERO
177
   20    CONTINUE
178
*
179
*        Incremental updating of F:
180
*        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'
181
*                    *A(RK:M,K).
182
*
183
         IF( K.GT.1 ) THEN
184
            CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
185
     $                  LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
186
*
187
            CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
188
     $                  AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
189
         END IF
190
*
191
*        Update the current row of A:
192
*        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.
193
*
194
         IF( K.LT.N ) THEN
195
            CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
196
     $                  A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
197
         END IF
198
*
199
*        Update partial column norms.
200
*
201
         IF( RK.LT.LASTRK ) THEN
202
            DO 30 J = K + 1, N
203
               IF( VN1( J ).NE.ZERO ) THEN
204
*
205
*                 NOTE: The following 4 lines follow from the analysis in
206
*                 Lapack Working Note 176.
207
*
208
                  TEMP = ABS( A( RK, J ) ) / VN1( J )
209
                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
210
                  TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
211
                  IF( TEMP2 .LE. TOL3Z ) THEN
212
                     VN2( J ) = DBLE( LSTICC )
213
                     LSTICC = J
214
                  ELSE
215
                     VN1( J ) = VN1( J )*SQRT( TEMP )
216
                  END IF
217
               END IF
218
   30       CONTINUE
219
         END IF
220
*
221
         A( RK, K ) = AKK
222
*
223
*        End of while loop.
224
*
225
         GO TO 10
226
      END IF
227
      KB = K
228
      RK = OFFSET + KB
229
*
230
*     Apply the block reflector to the rest of the matrix:
231
*     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
232
*                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'.
233
*
234
      IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
235
         CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
236
     $               A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
237
     $               A( RK+1, KB+1 ), LDA )
238
      END IF
239
*
240
*     Recomputation of difficult columns.
241
*
242
   40 CONTINUE
243
      IF( LSTICC.GT.0 ) THEN
244
         ITEMP = NINT( VN2( LSTICC ) )
245
         VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
246
*
247
*        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
248
*        SNRM2 does not fail on vectors with norm below the value of
249
*        SQRT(DLAMCH('S')) 
250
*
251
         VN2( LSTICC ) = VN1( LSTICC )
252
         LSTICC = ITEMP
253
         GO TO 40
254
      END IF
255
*
256
      RETURN
257
*
258
*     End of DLAQPS
259
*
260
      END