Statistiques
| Révision :

root / src / lapack / double / dlals0.f @ 10

Historique | Voir | Annoter | Télécharger (12,78 ko)

1
      SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
2
     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
3
     $                   POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
4
*
5
*  -- LAPACK routine (version 3.2) --
6
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
7
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
8
*     November 2006
9
*
10
*     .. Scalar Arguments ..
11
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
12
     $                   LDGNUM, NL, NR, NRHS, SQRE
13
      DOUBLE PRECISION   C, S
14
*     ..
15
*     .. Array Arguments ..
16
      INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
17
      DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ),
18
     $                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
19
     $                   POLES( LDGNUM, * ), WORK( * ), Z( * )
20
*     ..
21
*
22
*  Purpose
23
*  =======
24
*
25
*  DLALS0 applies back the multiplying factors of either the left or the
26
*  right singular vector matrix of a diagonal matrix appended by a row
27
*  to the right hand side matrix B in solving the least squares problem
28
*  using the divide-and-conquer SVD approach.
29
*
30
*  For the left singular vector matrix, three types of orthogonal
31
*  matrices are involved:
32
*
33
*  (1L) Givens rotations: the number of such rotations is GIVPTR; the
34
*       pairs of columns/rows they were applied to are stored in GIVCOL;
35
*       and the C- and S-values of these rotations are stored in GIVNUM.
36
*
37
*  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
38
*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the
39
*       J-th row.
40
*
41
*  (3L) The left singular vector matrix of the remaining matrix.
42
*
43
*  For the right singular vector matrix, four types of orthogonal
44
*  matrices are involved:
45
*
46
*  (1R) The right singular vector matrix of the remaining matrix.
47
*
48
*  (2R) If SQRE = 1, one extra Givens rotation to generate the right
49
*       null space.
50
*
51
*  (3R) The inverse transformation of (2L).
52
*
53
*  (4R) The inverse transformation of (1L).
54
*
55
*  Arguments
56
*  =========
57
*
58
*  ICOMPQ (input) INTEGER
59
*         Specifies whether singular vectors are to be computed in
60
*         factored form:
61
*         = 0: Left singular vector matrix.
62
*         = 1: Right singular vector matrix.
63
*
64
*  NL     (input) INTEGER
65
*         The row dimension of the upper block. NL >= 1.
66
*
67
*  NR     (input) INTEGER
68
*         The row dimension of the lower block. NR >= 1.
69
*
70
*  SQRE   (input) INTEGER
71
*         = 0: the lower block is an NR-by-NR square matrix.
72
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
73
*
74
*         The bidiagonal matrix has row dimension N = NL + NR + 1,
75
*         and column dimension M = N + SQRE.
76
*
77
*  NRHS   (input) INTEGER
78
*         The number of columns of B and BX. NRHS must be at least 1.
79
*
80
*  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
81
*         On input, B contains the right hand sides of the least
82
*         squares problem in rows 1 through M. On output, B contains
83
*         the solution X in rows 1 through N.
84
*
85
*  LDB    (input) INTEGER
86
*         The leading dimension of B. LDB must be at least
87
*         max(1,MAX( M, N ) ).
88
*
89
*  BX     (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
90
*
91
*  LDBX   (input) INTEGER
92
*         The leading dimension of BX.
93
*
94
*  PERM   (input) INTEGER array, dimension ( N )
95
*         The permutations (from deflation and sorting) applied
96
*         to the two blocks.
97
*
98
*  GIVPTR (input) INTEGER
99
*         The number of Givens rotations which took place in this
100
*         subproblem.
101
*
102
*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
103
*         Each pair of numbers indicates a pair of rows/columns
104
*         involved in a Givens rotation.
105
*
106
*  LDGCOL (input) INTEGER
107
*         The leading dimension of GIVCOL, must be at least N.
108
*
109
*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
110
*         Each number indicates the C or S value used in the
111
*         corresponding Givens rotation.
112
*
113
*  LDGNUM (input) INTEGER
114
*         The leading dimension of arrays DIFR, POLES and
115
*         GIVNUM, must be at least K.
116
*
117
*  POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
118
*         On entry, POLES(1:K, 1) contains the new singular
119
*         values obtained from solving the secular equation, and
120
*         POLES(1:K, 2) is an array containing the poles in the secular
121
*         equation.
122
*
123
*  DIFL   (input) DOUBLE PRECISION array, dimension ( K ).
124
*         On entry, DIFL(I) is the distance between I-th updated
125
*         (undeflated) singular value and the I-th (undeflated) old
126
*         singular value.
127
*
128
*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
129
*         On entry, DIFR(I, 1) contains the distances between I-th
130
*         updated (undeflated) singular value and the I+1-th
131
*         (undeflated) old singular value. And DIFR(I, 2) is the
132
*         normalizing factor for the I-th right singular vector.
133
*
134
*  Z      (input) DOUBLE PRECISION array, dimension ( K )
135
*         Contain the components of the deflation-adjusted updating row
136
*         vector.
137
*
138
*  K      (input) INTEGER
139
*         Contains the dimension of the non-deflated matrix,
140
*         This is the order of the related secular equation. 1 <= K <=N.
141
*
142
*  C      (input) DOUBLE PRECISION
143
*         C contains garbage if SQRE =0 and the C-value of a Givens
144
*         rotation related to the right null space if SQRE = 1.
145
*
146
*  S      (input) DOUBLE PRECISION
147
*         S contains garbage if SQRE =0 and the S-value of a Givens
148
*         rotation related to the right null space if SQRE = 1.
149
*
150
*  WORK   (workspace) DOUBLE PRECISION array, dimension ( K )
151
*
152
*  INFO   (output) INTEGER
153
*          = 0:  successful exit.
154
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
155
*
156
*  Further Details
157
*  ===============
158
*
159
*  Based on contributions by
160
*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
161
*       California at Berkeley, USA
162
*     Osni Marques, LBNL/NERSC, USA
163
*
164
*  =====================================================================
165
*
166
*     .. Parameters ..
167
      DOUBLE PRECISION   ONE, ZERO, NEGONE
168
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
169
*     ..
170
*     .. Local Scalars ..
171
      INTEGER            I, J, M, N, NLP1
172
      DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
173
*     ..
174
*     .. External Subroutines ..
175
      EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL,
176
     $                   XERBLA
177
*     ..
178
*     .. External Functions ..
179
      DOUBLE PRECISION   DLAMC3, DNRM2
180
      EXTERNAL           DLAMC3, DNRM2
181
*     ..
182
*     .. Intrinsic Functions ..
183
      INTRINSIC          MAX
184
*     ..
185
*     .. Executable Statements ..
186
*
187
*     Test the input parameters.
188
*
189
      INFO = 0
190
*
191
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
192
         INFO = -1
193
      ELSE IF( NL.LT.1 ) THEN
194
         INFO = -2
195
      ELSE IF( NR.LT.1 ) THEN
196
         INFO = -3
197
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
198
         INFO = -4
199
      END IF
200
*
201
      N = NL + NR + 1
202
*
203
      IF( NRHS.LT.1 ) THEN
204
         INFO = -5
205
      ELSE IF( LDB.LT.N ) THEN
206
         INFO = -7
207
      ELSE IF( LDBX.LT.N ) THEN
208
         INFO = -9
209
      ELSE IF( GIVPTR.LT.0 ) THEN
210
         INFO = -11
211
      ELSE IF( LDGCOL.LT.N ) THEN
212
         INFO = -13
213
      ELSE IF( LDGNUM.LT.N ) THEN
214
         INFO = -15
215
      ELSE IF( K.LT.1 ) THEN
216
         INFO = -20
217
      END IF
218
      IF( INFO.NE.0 ) THEN
219
         CALL XERBLA( 'DLALS0', -INFO )
220
         RETURN
221
      END IF
222
*
223
      M = N + SQRE
224
      NLP1 = NL + 1
225
*
226
      IF( ICOMPQ.EQ.0 ) THEN
227
*
228
*        Apply back orthogonal transformations from the left.
229
*
230
*        Step (1L): apply back the Givens rotations performed.
231
*
232
         DO 10 I = 1, GIVPTR
233
            CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
234
     $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
235
     $                 GIVNUM( I, 1 ) )
236
   10    CONTINUE
237
*
238
*        Step (2L): permute rows of B.
239
*
240
         CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
241
         DO 20 I = 2, N
242
            CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
243
   20    CONTINUE
244
*
245
*        Step (3L): apply the inverse of the left singular vector
246
*        matrix to BX.
247
*
248
         IF( K.EQ.1 ) THEN
249
            CALL DCOPY( NRHS, BX, LDBX, B, LDB )
250
            IF( Z( 1 ).LT.ZERO ) THEN
251
               CALL DSCAL( NRHS, NEGONE, B, LDB )
252
            END IF
253
         ELSE
254
            DO 50 J = 1, K
255
               DIFLJ = DIFL( J )
256
               DJ = POLES( J, 1 )
257
               DSIGJ = -POLES( J, 2 )
258
               IF( J.LT.K ) THEN
259
                  DIFRJ = -DIFR( J, 1 )
260
                  DSIGJP = -POLES( J+1, 2 )
261
               END IF
262
               IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
263
     $              THEN
264
                  WORK( J ) = ZERO
265
               ELSE
266
                  WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
267
     $                        ( POLES( J, 2 )+DJ )
268
               END IF
269
               DO 30 I = 1, J - 1
270
                  IF( ( Z( I ).EQ.ZERO ) .OR.
271
     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
272
                     WORK( I ) = ZERO
273
                  ELSE
274
                     WORK( I ) = POLES( I, 2 )*Z( I ) /
275
     $                           ( DLAMC3( POLES( I, 2 ), DSIGJ )-
276
     $                           DIFLJ ) / ( POLES( I, 2 )+DJ )
277
                  END IF
278
   30          CONTINUE
279
               DO 40 I = J + 1, K
280
                  IF( ( Z( I ).EQ.ZERO ) .OR.
281
     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
282
                     WORK( I ) = ZERO
283
                  ELSE
284
                     WORK( I ) = POLES( I, 2 )*Z( I ) /
285
     $                           ( DLAMC3( POLES( I, 2 ), DSIGJP )+
286
     $                           DIFRJ ) / ( POLES( I, 2 )+DJ )
287
                  END IF
288
   40          CONTINUE
289
               WORK( 1 ) = NEGONE
290
               TEMP = DNRM2( K, WORK, 1 )
291
               CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
292
     $                     B( J, 1 ), LDB )
293
               CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
294
     $                      LDB, INFO )
295
   50       CONTINUE
296
         END IF
297
*
298
*        Move the deflated rows of BX to B also.
299
*
300
         IF( K.LT.MAX( M, N ) )
301
     $      CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
302
     $                   B( K+1, 1 ), LDB )
303
      ELSE
304
*
305
*        Apply back the right orthogonal transformations.
306
*
307
*        Step (1R): apply back the new right singular vector matrix
308
*        to B.
309
*
310
         IF( K.EQ.1 ) THEN
311
            CALL DCOPY( NRHS, B, LDB, BX, LDBX )
312
         ELSE
313
            DO 80 J = 1, K
314
               DSIGJ = POLES( J, 2 )
315
               IF( Z( J ).EQ.ZERO ) THEN
316
                  WORK( J ) = ZERO
317
               ELSE
318
                  WORK( J ) = -Z( J ) / DIFL( J ) /
319
     $                        ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
320
               END IF
321
               DO 60 I = 1, J - 1
322
                  IF( Z( J ).EQ.ZERO ) THEN
323
                     WORK( I ) = ZERO
324
                  ELSE
325
                     WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,
326
     $                           2 ) )-DIFR( I, 1 ) ) /
327
     $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
328
                  END IF
329
   60          CONTINUE
330
               DO 70 I = J + 1, K
331
                  IF( Z( J ).EQ.ZERO ) THEN
332
                     WORK( I ) = ZERO
333
                  ELSE
334
                     WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,
335
     $                           2 ) )-DIFL( I ) ) /
336
     $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
337
                  END IF
338
   70          CONTINUE
339
               CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
340
     $                     BX( J, 1 ), LDBX )
341
   80       CONTINUE
342
         END IF
343
*
344
*        Step (2R): if SQRE = 1, apply back the rotation that is
345
*        related to the right null space of the subproblem.
346
*
347
         IF( SQRE.EQ.1 ) THEN
348
            CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
349
            CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
350
         END IF
351
         IF( K.LT.MAX( M, N ) )
352
     $      CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ),
353
     $                   LDBX )
354
*
355
*        Step (3R): permute rows of B.
356
*
357
         CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
358
         IF( SQRE.EQ.1 ) THEN
359
            CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
360
         END IF
361
         DO 90 I = 2, N
362
            CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
363
   90    CONTINUE
364
*
365
*        Step (4R): apply back the Givens rotations performed.
366
*
367
         DO 100 I = GIVPTR, 1, -1
368
            CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
369
     $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
370
     $                 -GIVNUM( I, 1 ) )
371
  100    CONTINUE
372
      END IF
373
*
374
      RETURN
375
*
376
*     End of DLALS0
377
*
378
      END