root / src / lapack / double / dlabrd.f @ 10
Historique | Voir | Annoter | Télécharger (11,42 ko)
1 |
SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, |
---|---|
2 |
$ LDY ) |
3 |
* |
4 |
* -- LAPACK auxiliary routine (version 3.2) -- |
5 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
6 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
7 |
* November 2006 |
8 |
* |
9 |
* .. Scalar Arguments .. |
10 |
INTEGER LDA, LDX, LDY, M, N, NB |
11 |
* .. |
12 |
* .. Array Arguments .. |
13 |
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ), |
14 |
$ TAUQ( * ), X( LDX, * ), Y( LDY, * ) |
15 |
* .. |
16 |
* |
17 |
* Purpose |
18 |
* ======= |
19 |
* |
20 |
* DLABRD reduces the first NB rows and columns of a real general |
21 |
* m by n matrix A to upper or lower bidiagonal form by an orthogonal |
22 |
* transformation Q' * A * P, and returns the matrices X and Y which |
23 |
* are needed to apply the transformation to the unreduced part of A. |
24 |
* |
25 |
* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower |
26 |
* bidiagonal form. |
27 |
* |
28 |
* This is an auxiliary routine called by DGEBRD |
29 |
* |
30 |
* Arguments |
31 |
* ========= |
32 |
* |
33 |
* M (input) INTEGER |
34 |
* The number of rows in the matrix A. |
35 |
* |
36 |
* N (input) INTEGER |
37 |
* The number of columns in the matrix A. |
38 |
* |
39 |
* NB (input) INTEGER |
40 |
* The number of leading rows and columns of A to be reduced. |
41 |
* |
42 |
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
43 |
* On entry, the m by n general matrix to be reduced. |
44 |
* On exit, the first NB rows and columns of the matrix are |
45 |
* overwritten; the rest of the array is unchanged. |
46 |
* If m >= n, elements on and below the diagonal in the first NB |
47 |
* columns, with the array TAUQ, represent the orthogonal |
48 |
* matrix Q as a product of elementary reflectors; and |
49 |
* elements above the diagonal in the first NB rows, with the |
50 |
* array TAUP, represent the orthogonal matrix P as a product |
51 |
* of elementary reflectors. |
52 |
* If m < n, elements below the diagonal in the first NB |
53 |
* columns, with the array TAUQ, represent the orthogonal |
54 |
* matrix Q as a product of elementary reflectors, and |
55 |
* elements on and above the diagonal in the first NB rows, |
56 |
* with the array TAUP, represent the orthogonal matrix P as |
57 |
* a product of elementary reflectors. |
58 |
* See Further Details. |
59 |
* |
60 |
* LDA (input) INTEGER |
61 |
* The leading dimension of the array A. LDA >= max(1,M). |
62 |
* |
63 |
* D (output) DOUBLE PRECISION array, dimension (NB) |
64 |
* The diagonal elements of the first NB rows and columns of |
65 |
* the reduced matrix. D(i) = A(i,i). |
66 |
* |
67 |
* E (output) DOUBLE PRECISION array, dimension (NB) |
68 |
* The off-diagonal elements of the first NB rows and columns of |
69 |
* the reduced matrix. |
70 |
* |
71 |
* TAUQ (output) DOUBLE PRECISION array dimension (NB) |
72 |
* The scalar factors of the elementary reflectors which |
73 |
* represent the orthogonal matrix Q. See Further Details. |
74 |
* |
75 |
* TAUP (output) DOUBLE PRECISION array, dimension (NB) |
76 |
* The scalar factors of the elementary reflectors which |
77 |
* represent the orthogonal matrix P. See Further Details. |
78 |
* |
79 |
* X (output) DOUBLE PRECISION array, dimension (LDX,NB) |
80 |
* The m-by-nb matrix X required to update the unreduced part |
81 |
* of A. |
82 |
* |
83 |
* LDX (input) INTEGER |
84 |
* The leading dimension of the array X. LDX >= M. |
85 |
* |
86 |
* Y (output) DOUBLE PRECISION array, dimension (LDY,NB) |
87 |
* The n-by-nb matrix Y required to update the unreduced part |
88 |
* of A. |
89 |
* |
90 |
* LDY (input) INTEGER |
91 |
* The leading dimension of the array Y. LDY >= N. |
92 |
* |
93 |
* Further Details |
94 |
* =============== |
95 |
* |
96 |
* The matrices Q and P are represented as products of elementary |
97 |
* reflectors: |
98 |
* |
99 |
* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) |
100 |
* |
101 |
* Each H(i) and G(i) has the form: |
102 |
* |
103 |
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' |
104 |
* |
105 |
* where tauq and taup are real scalars, and v and u are real vectors. |
106 |
* |
107 |
* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in |
108 |
* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in |
109 |
* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). |
110 |
* |
111 |
* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in |
112 |
* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in |
113 |
* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). |
114 |
* |
115 |
* The elements of the vectors v and u together form the m-by-nb matrix |
116 |
* V and the nb-by-n matrix U' which are needed, with X and Y, to apply |
117 |
* the transformation to the unreduced part of the matrix, using a block |
118 |
* update of the form: A := A - V*Y' - X*U'. |
119 |
* |
120 |
* The contents of A on exit are illustrated by the following examples |
121 |
* with nb = 2: |
122 |
* |
123 |
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): |
124 |
* |
125 |
* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) |
126 |
* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) |
127 |
* ( v1 v2 a a a ) ( v1 1 a a a a ) |
128 |
* ( v1 v2 a a a ) ( v1 v2 a a a a ) |
129 |
* ( v1 v2 a a a ) ( v1 v2 a a a a ) |
130 |
* ( v1 v2 a a a ) |
131 |
* |
132 |
* where a denotes an element of the original matrix which is unchanged, |
133 |
* vi denotes an element of the vector defining H(i), and ui an element |
134 |
* of the vector defining G(i). |
135 |
* |
136 |
* ===================================================================== |
137 |
* |
138 |
* .. Parameters .. |
139 |
DOUBLE PRECISION ZERO, ONE |
140 |
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) |
141 |
* .. |
142 |
* .. Local Scalars .. |
143 |
INTEGER I |
144 |
* .. |
145 |
* .. External Subroutines .. |
146 |
EXTERNAL DGEMV, DLARFG, DSCAL |
147 |
* .. |
148 |
* .. Intrinsic Functions .. |
149 |
INTRINSIC MIN |
150 |
* .. |
151 |
* .. Executable Statements .. |
152 |
* |
153 |
* Quick return if possible |
154 |
* |
155 |
IF( M.LE.0 .OR. N.LE.0 ) |
156 |
$ RETURN |
157 |
* |
158 |
IF( M.GE.N ) THEN |
159 |
* |
160 |
* Reduce to upper bidiagonal form |
161 |
* |
162 |
DO 10 I = 1, NB |
163 |
* |
164 |
* Update A(i:m,i) |
165 |
* |
166 |
CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ), |
167 |
$ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 ) |
168 |
CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ), |
169 |
$ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 ) |
170 |
* |
171 |
* Generate reflection Q(i) to annihilate A(i+1:m,i) |
172 |
* |
173 |
CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1, |
174 |
$ TAUQ( I ) ) |
175 |
D( I ) = A( I, I ) |
176 |
IF( I.LT.N ) THEN |
177 |
A( I, I ) = ONE |
178 |
* |
179 |
* Compute Y(i+1:n,i) |
180 |
* |
181 |
CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ), |
182 |
$ LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 ) |
183 |
CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA, |
184 |
$ A( I, I ), 1, ZERO, Y( 1, I ), 1 ) |
185 |
CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ), |
186 |
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) |
187 |
CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX, |
188 |
$ A( I, I ), 1, ZERO, Y( 1, I ), 1 ) |
189 |
CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ), |
190 |
$ LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) |
191 |
CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 ) |
192 |
* |
193 |
* Update A(i,i+1:n) |
194 |
* |
195 |
CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ), |
196 |
$ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA ) |
197 |
CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ), |
198 |
$ LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA ) |
199 |
* |
200 |
* Generate reflection P(i) to annihilate A(i,i+2:n) |
201 |
* |
202 |
CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ), |
203 |
$ LDA, TAUP( I ) ) |
204 |
E( I ) = A( I, I+1 ) |
205 |
A( I, I+1 ) = ONE |
206 |
* |
207 |
* Compute X(i+1:m,i) |
208 |
* |
209 |
CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ), |
210 |
$ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 ) |
211 |
CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY, |
212 |
$ A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 ) |
213 |
CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ), |
214 |
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) |
215 |
CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ), |
216 |
$ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 ) |
217 |
CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ), |
218 |
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) |
219 |
CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 ) |
220 |
END IF |
221 |
10 CONTINUE |
222 |
ELSE |
223 |
* |
224 |
* Reduce to lower bidiagonal form |
225 |
* |
226 |
DO 20 I = 1, NB |
227 |
* |
228 |
* Update A(i,i:n) |
229 |
* |
230 |
CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ), |
231 |
$ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA ) |
232 |
CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA, |
233 |
$ X( I, 1 ), LDX, ONE, A( I, I ), LDA ) |
234 |
* |
235 |
* Generate reflection P(i) to annihilate A(i,i+1:n) |
236 |
* |
237 |
CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA, |
238 |
$ TAUP( I ) ) |
239 |
D( I ) = A( I, I ) |
240 |
IF( I.LT.M ) THEN |
241 |
A( I, I ) = ONE |
242 |
* |
243 |
* Compute X(i+1:m,i) |
244 |
* |
245 |
CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ), |
246 |
$ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 ) |
247 |
CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY, |
248 |
$ A( I, I ), LDA, ZERO, X( 1, I ), 1 ) |
249 |
CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ), |
250 |
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) |
251 |
CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ), |
252 |
$ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 ) |
253 |
CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ), |
254 |
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) |
255 |
CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 ) |
256 |
* |
257 |
* Update A(i+1:m,i) |
258 |
* |
259 |
CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ), |
260 |
$ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 ) |
261 |
CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ), |
262 |
$ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 ) |
263 |
* |
264 |
* Generate reflection Q(i) to annihilate A(i+2:m,i) |
265 |
* |
266 |
CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1, |
267 |
$ TAUQ( I ) ) |
268 |
E( I ) = A( I+1, I ) |
269 |
A( I+1, I ) = ONE |
270 |
* |
271 |
* Compute Y(i+1:n,i) |
272 |
* |
273 |
CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ), |
274 |
$ LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 ) |
275 |
CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA, |
276 |
$ A( I+1, I ), 1, ZERO, Y( 1, I ), 1 ) |
277 |
CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ), |
278 |
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) |
279 |
CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX, |
280 |
$ A( I+1, I ), 1, ZERO, Y( 1, I ), 1 ) |
281 |
CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA, |
282 |
$ Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) |
283 |
CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 ) |
284 |
END IF |
285 |
20 CONTINUE |
286 |
END IF |
287 |
RETURN |
288 |
* |
289 |
* End of DLABRD |
290 |
* |
291 |
END |