Statistiques
| Révision :

root / src / lapack / double / dlabrd.f @ 10

Historique | Voir | Annoter | Télécharger (11,42 ko)

1
      SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
2
     $                   LDY )
3
*
4
*  -- LAPACK auxiliary routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      INTEGER            LDA, LDX, LDY, M, N, NB
11
*     ..
12
*     .. Array Arguments ..
13
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
14
     $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DLABRD reduces the first NB rows and columns of a real general
21
*  m by n matrix A to upper or lower bidiagonal form by an orthogonal
22
*  transformation Q' * A * P, and returns the matrices X and Y which
23
*  are needed to apply the transformation to the unreduced part of A.
24
*
25
*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
26
*  bidiagonal form.
27
*
28
*  This is an auxiliary routine called by DGEBRD
29
*
30
*  Arguments
31
*  =========
32
*
33
*  M       (input) INTEGER
34
*          The number of rows in the matrix A.
35
*
36
*  N       (input) INTEGER
37
*          The number of columns in the matrix A.
38
*
39
*  NB      (input) INTEGER
40
*          The number of leading rows and columns of A to be reduced.
41
*
42
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
43
*          On entry, the m by n general matrix to be reduced.
44
*          On exit, the first NB rows and columns of the matrix are
45
*          overwritten; the rest of the array is unchanged.
46
*          If m >= n, elements on and below the diagonal in the first NB
47
*            columns, with the array TAUQ, represent the orthogonal
48
*            matrix Q as a product of elementary reflectors; and
49
*            elements above the diagonal in the first NB rows, with the
50
*            array TAUP, represent the orthogonal matrix P as a product
51
*            of elementary reflectors.
52
*          If m < n, elements below the diagonal in the first NB
53
*            columns, with the array TAUQ, represent the orthogonal
54
*            matrix Q as a product of elementary reflectors, and
55
*            elements on and above the diagonal in the first NB rows,
56
*            with the array TAUP, represent the orthogonal matrix P as
57
*            a product of elementary reflectors.
58
*          See Further Details.
59
*
60
*  LDA     (input) INTEGER
61
*          The leading dimension of the array A.  LDA >= max(1,M).
62
*
63
*  D       (output) DOUBLE PRECISION array, dimension (NB)
64
*          The diagonal elements of the first NB rows and columns of
65
*          the reduced matrix.  D(i) = A(i,i).
66
*
67
*  E       (output) DOUBLE PRECISION array, dimension (NB)
68
*          The off-diagonal elements of the first NB rows and columns of
69
*          the reduced matrix.
70
*
71
*  TAUQ    (output) DOUBLE PRECISION array dimension (NB)
72
*          The scalar factors of the elementary reflectors which
73
*          represent the orthogonal matrix Q. See Further Details.
74
*
75
*  TAUP    (output) DOUBLE PRECISION array, dimension (NB)
76
*          The scalar factors of the elementary reflectors which
77
*          represent the orthogonal matrix P. See Further Details.
78
*
79
*  X       (output) DOUBLE PRECISION array, dimension (LDX,NB)
80
*          The m-by-nb matrix X required to update the unreduced part
81
*          of A.
82
*
83
*  LDX     (input) INTEGER
84
*          The leading dimension of the array X. LDX >= M.
85
*
86
*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
87
*          The n-by-nb matrix Y required to update the unreduced part
88
*          of A.
89
*
90
*  LDY     (input) INTEGER
91
*          The leading dimension of the array Y. LDY >= N.
92
*
93
*  Further Details
94
*  ===============
95
*
96
*  The matrices Q and P are represented as products of elementary
97
*  reflectors:
98
*
99
*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
100
*
101
*  Each H(i) and G(i) has the form:
102
*
103
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
104
*
105
*  where tauq and taup are real scalars, and v and u are real vectors.
106
*
107
*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
108
*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
109
*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
110
*
111
*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
112
*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
113
*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
114
*
115
*  The elements of the vectors v and u together form the m-by-nb matrix
116
*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
117
*  the transformation to the unreduced part of the matrix, using a block
118
*  update of the form:  A := A - V*Y' - X*U'.
119
*
120
*  The contents of A on exit are illustrated by the following examples
121
*  with nb = 2:
122
*
123
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
124
*
125
*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
126
*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
127
*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
128
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
129
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
130
*    (  v1  v2  a   a   a  )
131
*
132
*  where a denotes an element of the original matrix which is unchanged,
133
*  vi denotes an element of the vector defining H(i), and ui an element
134
*  of the vector defining G(i).
135
*
136
*  =====================================================================
137
*
138
*     .. Parameters ..
139
      DOUBLE PRECISION   ZERO, ONE
140
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
141
*     ..
142
*     .. Local Scalars ..
143
      INTEGER            I
144
*     ..
145
*     .. External Subroutines ..
146
      EXTERNAL           DGEMV, DLARFG, DSCAL
147
*     ..
148
*     .. Intrinsic Functions ..
149
      INTRINSIC          MIN
150
*     ..
151
*     .. Executable Statements ..
152
*
153
*     Quick return if possible
154
*
155
      IF( M.LE.0 .OR. N.LE.0 )
156
     $   RETURN
157
*
158
      IF( M.GE.N ) THEN
159
*
160
*        Reduce to upper bidiagonal form
161
*
162
         DO 10 I = 1, NB
163
*
164
*           Update A(i:m,i)
165
*
166
            CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
167
     $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
168
            CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
169
     $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
170
*
171
*           Generate reflection Q(i) to annihilate A(i+1:m,i)
172
*
173
            CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
174
     $                   TAUQ( I ) )
175
            D( I ) = A( I, I )
176
            IF( I.LT.N ) THEN
177
               A( I, I ) = ONE
178
*
179
*              Compute Y(i+1:n,i)
180
*
181
               CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
182
     $                     LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
183
               CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
184
     $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
185
               CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
186
     $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
187
               CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
188
     $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
189
               CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
190
     $                     LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
191
               CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
192
*
193
*              Update A(i,i+1:n)
194
*
195
               CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
196
     $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
197
               CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
198
     $                     LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
199
*
200
*              Generate reflection P(i) to annihilate A(i,i+2:n)
201
*
202
               CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
203
     $                      LDA, TAUP( I ) )
204
               E( I ) = A( I, I+1 )
205
               A( I, I+1 ) = ONE
206
*
207
*              Compute X(i+1:m,i)
208
*
209
               CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
210
     $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
211
               CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
212
     $                     A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
213
               CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
214
     $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
215
               CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
216
     $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
217
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
218
     $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
219
               CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
220
            END IF
221
   10    CONTINUE
222
      ELSE
223
*
224
*        Reduce to lower bidiagonal form
225
*
226
         DO 20 I = 1, NB
227
*
228
*           Update A(i,i:n)
229
*
230
            CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
231
     $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
232
            CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
233
     $                  X( I, 1 ), LDX, ONE, A( I, I ), LDA )
234
*
235
*           Generate reflection P(i) to annihilate A(i,i+1:n)
236
*
237
            CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
238
     $                   TAUP( I ) )
239
            D( I ) = A( I, I )
240
            IF( I.LT.M ) THEN
241
               A( I, I ) = ONE
242
*
243
*              Compute X(i+1:m,i)
244
*
245
               CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
246
     $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
247
               CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
248
     $                     A( I, I ), LDA, ZERO, X( 1, I ), 1 )
249
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
250
     $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
251
               CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
252
     $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
253
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
254
     $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
255
               CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
256
*
257
*              Update A(i+1:m,i)
258
*
259
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
260
     $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
261
               CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
262
     $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
263
*
264
*              Generate reflection Q(i) to annihilate A(i+2:m,i)
265
*
266
               CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
267
     $                      TAUQ( I ) )
268
               E( I ) = A( I+1, I )
269
               A( I+1, I ) = ONE
270
*
271
*              Compute Y(i+1:n,i)
272
*
273
               CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
274
     $                     LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
275
               CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
276
     $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
277
               CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
278
     $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
279
               CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
280
     $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
281
               CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
282
     $                     Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
283
               CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
284
            END IF
285
   20    CONTINUE
286
      END IF
287
      RETURN
288
*
289
*     End of DLABRD
290
*
291
      END