Statistiques
| Révision :

root / src / lapack / double / dgebd2.f @ 10

Historique | Voir | Annoter | Télécharger (7,87 ko)

1
      SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
2
*
3
*  -- LAPACK routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     November 2006
7
*
8
*     .. Scalar Arguments ..
9
      INTEGER            INFO, LDA, M, N
10
*     ..
11
*     .. Array Arguments ..
12
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
13
     $                   TAUQ( * ), WORK( * )
14
*     ..
15
*
16
*  Purpose
17
*  =======
18
*
19
*  DGEBD2 reduces a real general m by n matrix A to upper or lower
20
*  bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
21
*
22
*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
23
*
24
*  Arguments
25
*  =========
26
*
27
*  M       (input) INTEGER
28
*          The number of rows in the matrix A.  M >= 0.
29
*
30
*  N       (input) INTEGER
31
*          The number of columns in the matrix A.  N >= 0.
32
*
33
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
34
*          On entry, the m by n general matrix to be reduced.
35
*          On exit,
36
*          if m >= n, the diagonal and the first superdiagonal are
37
*            overwritten with the upper bidiagonal matrix B; the
38
*            elements below the diagonal, with the array TAUQ, represent
39
*            the orthogonal matrix Q as a product of elementary
40
*            reflectors, and the elements above the first superdiagonal,
41
*            with the array TAUP, represent the orthogonal matrix P as
42
*            a product of elementary reflectors;
43
*          if m < n, the diagonal and the first subdiagonal are
44
*            overwritten with the lower bidiagonal matrix B; the
45
*            elements below the first subdiagonal, with the array TAUQ,
46
*            represent the orthogonal matrix Q as a product of
47
*            elementary reflectors, and the elements above the diagonal,
48
*            with the array TAUP, represent the orthogonal matrix P as
49
*            a product of elementary reflectors.
50
*          See Further Details.
51
*
52
*  LDA     (input) INTEGER
53
*          The leading dimension of the array A.  LDA >= max(1,M).
54
*
55
*  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
56
*          The diagonal elements of the bidiagonal matrix B:
57
*          D(i) = A(i,i).
58
*
59
*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
60
*          The off-diagonal elements of the bidiagonal matrix B:
61
*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
62
*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
63
*
64
*  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N))
65
*          The scalar factors of the elementary reflectors which
66
*          represent the orthogonal matrix Q. See Further Details.
67
*
68
*  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N))
69
*          The scalar factors of the elementary reflectors which
70
*          represent the orthogonal matrix P. See Further Details.
71
*
72
*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(M,N))
73
*
74
*  INFO    (output) INTEGER
75
*          = 0: successful exit.
76
*          < 0: if INFO = -i, the i-th argument had an illegal value.
77
*
78
*  Further Details
79
*  ===============
80
*
81
*  The matrices Q and P are represented as products of elementary
82
*  reflectors:
83
*
84
*  If m >= n,
85
*
86
*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
87
*
88
*  Each H(i) and G(i) has the form:
89
*
90
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
91
*
92
*  where tauq and taup are real scalars, and v and u are real vectors;
93
*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
94
*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
95
*  tauq is stored in TAUQ(i) and taup in TAUP(i).
96
*
97
*  If m < n,
98
*
99
*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
100
*
101
*  Each H(i) and G(i) has the form:
102
*
103
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
104
*
105
*  where tauq and taup are real scalars, and v and u are real vectors;
106
*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
107
*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
108
*  tauq is stored in TAUQ(i) and taup in TAUP(i).
109
*
110
*  The contents of A on exit are illustrated by the following examples:
111
*
112
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
113
*
114
*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
115
*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
116
*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
117
*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
118
*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
119
*    (  v1  v2  v3  v4  v5 )
120
*
121
*  where d and e denote diagonal and off-diagonal elements of B, vi
122
*  denotes an element of the vector defining H(i), and ui an element of
123
*  the vector defining G(i).
124
*
125
*  =====================================================================
126
*
127
*     .. Parameters ..
128
      DOUBLE PRECISION   ZERO, ONE
129
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
130
*     ..
131
*     .. Local Scalars ..
132
      INTEGER            I
133
*     ..
134
*     .. External Subroutines ..
135
      EXTERNAL           DLARF, DLARFG, XERBLA
136
*     ..
137
*     .. Intrinsic Functions ..
138
      INTRINSIC          MAX, MIN
139
*     ..
140
*     .. Executable Statements ..
141
*
142
*     Test the input parameters
143
*
144
      INFO = 0
145
      IF( M.LT.0 ) THEN
146
         INFO = -1
147
      ELSE IF( N.LT.0 ) THEN
148
         INFO = -2
149
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
150
         INFO = -4
151
      END IF
152
      IF( INFO.LT.0 ) THEN
153
         CALL XERBLA( 'DGEBD2', -INFO )
154
         RETURN
155
      END IF
156
*
157
      IF( M.GE.N ) THEN
158
*
159
*        Reduce to upper bidiagonal form
160
*
161
         DO 10 I = 1, N
162
*
163
*           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
164
*
165
            CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
166
     $                   TAUQ( I ) )
167
            D( I ) = A( I, I )
168
            A( I, I ) = ONE
169
*
170
*           Apply H(i) to A(i:m,i+1:n) from the left
171
*
172
            IF( I.LT.N )
173
     $         CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAUQ( I ),
174
     $                     A( I, I+1 ), LDA, WORK )
175
            A( I, I ) = D( I )
176
*
177
            IF( I.LT.N ) THEN
178
*
179
*              Generate elementary reflector G(i) to annihilate
180
*              A(i,i+2:n)
181
*
182
               CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
183
     $                      LDA, TAUP( I ) )
184
               E( I ) = A( I, I+1 )
185
               A( I, I+1 ) = ONE
186
*
187
*              Apply G(i) to A(i+1:m,i+1:n) from the right
188
*
189
               CALL DLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
190
     $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
191
               A( I, I+1 ) = E( I )
192
            ELSE
193
               TAUP( I ) = ZERO
194
            END IF
195
   10    CONTINUE
196
      ELSE
197
*
198
*        Reduce to lower bidiagonal form
199
*
200
         DO 20 I = 1, M
201
*
202
*           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
203
*
204
            CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
205
     $                   TAUP( I ) )
206
            D( I ) = A( I, I )
207
            A( I, I ) = ONE
208
*
209
*           Apply G(i) to A(i+1:m,i:n) from the right
210
*
211
            IF( I.LT.M )
212
     $         CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
213
     $                     TAUP( I ), A( I+1, I ), LDA, WORK )
214
            A( I, I ) = D( I )
215
*
216
            IF( I.LT.M ) THEN
217
*
218
*              Generate elementary reflector H(i) to annihilate
219
*              A(i+2:m,i)
220
*
221
               CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
222
     $                      TAUQ( I ) )
223
               E( I ) = A( I+1, I )
224
               A( I+1, I ) = ONE
225
*
226
*              Apply H(i) to A(i+1:m,i+1:n) from the left
227
*
228
               CALL DLARF( 'Left', M-I, N-I, A( I+1, I ), 1, TAUQ( I ),
229
     $                     A( I+1, I+1 ), LDA, WORK )
230
               A( I+1, I ) = E( I )
231
            ELSE
232
               TAUQ( I ) = ZERO
233
            END IF
234
   20    CONTINUE
235
      END IF
236
      RETURN
237
*
238
*     End of DGEBD2
239
*
240
      END