root / src / blas / zhpr2.f @ 10
Historique | Voir | Annoter | Télécharger (8,05 ko)
1 |
SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE COMPLEX ALPHA |
4 |
INTEGER INCX,INCY,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX AP(*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHPR2 performs the hermitian rank 2 operation |
15 |
* |
16 |
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
17 |
* |
18 |
* where alpha is a scalar, x and y are n element vectors and A is an |
19 |
* n by n hermitian matrix, supplied in packed form. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the matrix A is supplied in the packed |
27 |
* array AP as follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' The upper triangular part of A is |
30 |
* supplied in AP. |
31 |
* |
32 |
* UPLO = 'L' or 'l' The lower triangular part of A is |
33 |
* supplied in AP. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - COMPLEX*16 . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* X - COMPLEX*16 array of dimension at least |
47 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
48 |
* Before entry, the incremented array X must contain the n |
49 |
* element vector x. |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* INCX - INTEGER. |
53 |
* On entry, INCX specifies the increment for the elements of |
54 |
* X. INCX must not be zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* Y - COMPLEX*16 array of dimension at least |
58 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
59 |
* Before entry, the incremented array Y must contain the n |
60 |
* element vector y. |
61 |
* Unchanged on exit. |
62 |
* |
63 |
* INCY - INTEGER. |
64 |
* On entry, INCY specifies the increment for the elements of |
65 |
* Y. INCY must not be zero. |
66 |
* Unchanged on exit. |
67 |
* |
68 |
* AP - COMPLEX*16 array of DIMENSION at least |
69 |
* ( ( n*( n + 1 ) )/2 ). |
70 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
71 |
* contain the upper triangular part of the hermitian matrix |
72 |
* packed sequentially, column by column, so that AP( 1 ) |
73 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
74 |
* and a( 2, 2 ) respectively, and so on. On exit, the array |
75 |
* AP is overwritten by the upper triangular part of the |
76 |
* updated matrix. |
77 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
78 |
* contain the lower triangular part of the hermitian matrix |
79 |
* packed sequentially, column by column, so that AP( 1 ) |
80 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
81 |
* and a( 3, 1 ) respectively, and so on. On exit, the array |
82 |
* AP is overwritten by the lower triangular part of the |
83 |
* updated matrix. |
84 |
* Note that the imaginary parts of the diagonal elements need |
85 |
* not be set, they are assumed to be zero, and on exit they |
86 |
* are set to zero. |
87 |
* |
88 |
* |
89 |
* Level 2 Blas routine. |
90 |
* |
91 |
* -- Written on 22-October-1986. |
92 |
* Jack Dongarra, Argonne National Lab. |
93 |
* Jeremy Du Croz, Nag Central Office. |
94 |
* Sven Hammarling, Nag Central Office. |
95 |
* Richard Hanson, Sandia National Labs. |
96 |
* |
97 |
* |
98 |
* .. Parameters .. |
99 |
DOUBLE COMPLEX ZERO |
100 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
101 |
* .. |
102 |
* .. Local Scalars .. |
103 |
DOUBLE COMPLEX TEMP1,TEMP2 |
104 |
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY |
105 |
* .. |
106 |
* .. External Functions .. |
107 |
LOGICAL LSAME |
108 |
EXTERNAL LSAME |
109 |
* .. |
110 |
* .. External Subroutines .. |
111 |
EXTERNAL XERBLA |
112 |
* .. |
113 |
* .. Intrinsic Functions .. |
114 |
INTRINSIC DBLE,DCONJG |
115 |
* .. |
116 |
* |
117 |
* Test the input parameters. |
118 |
* |
119 |
INFO = 0 |
120 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
121 |
INFO = 1 |
122 |
ELSE IF (N.LT.0) THEN |
123 |
INFO = 2 |
124 |
ELSE IF (INCX.EQ.0) THEN |
125 |
INFO = 5 |
126 |
ELSE IF (INCY.EQ.0) THEN |
127 |
INFO = 7 |
128 |
END IF |
129 |
IF (INFO.NE.0) THEN |
130 |
CALL XERBLA('ZHPR2 ',INFO) |
131 |
RETURN |
132 |
END IF |
133 |
* |
134 |
* Quick return if possible. |
135 |
* |
136 |
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
137 |
* |
138 |
* Set up the start points in X and Y if the increments are not both |
139 |
* unity. |
140 |
* |
141 |
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN |
142 |
IF (INCX.GT.0) THEN |
143 |
KX = 1 |
144 |
ELSE |
145 |
KX = 1 - (N-1)*INCX |
146 |
END IF |
147 |
IF (INCY.GT.0) THEN |
148 |
KY = 1 |
149 |
ELSE |
150 |
KY = 1 - (N-1)*INCY |
151 |
END IF |
152 |
JX = KX |
153 |
JY = KY |
154 |
END IF |
155 |
* |
156 |
* Start the operations. In this version the elements of the array AP |
157 |
* are accessed sequentially with one pass through AP. |
158 |
* |
159 |
KK = 1 |
160 |
IF (LSAME(UPLO,'U')) THEN |
161 |
* |
162 |
* Form A when upper triangle is stored in AP. |
163 |
* |
164 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
165 |
DO 20 J = 1,N |
166 |
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN |
167 |
TEMP1 = ALPHA*DCONJG(Y(J)) |
168 |
TEMP2 = DCONJG(ALPHA*X(J)) |
169 |
K = KK |
170 |
DO 10 I = 1,J - 1 |
171 |
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 |
172 |
K = K + 1 |
173 |
10 CONTINUE |
174 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) + |
175 |
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2) |
176 |
ELSE |
177 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) |
178 |
END IF |
179 |
KK = KK + J |
180 |
20 CONTINUE |
181 |
ELSE |
182 |
DO 40 J = 1,N |
183 |
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN |
184 |
TEMP1 = ALPHA*DCONJG(Y(JY)) |
185 |
TEMP2 = DCONJG(ALPHA*X(JX)) |
186 |
IX = KX |
187 |
IY = KY |
188 |
DO 30 K = KK,KK + J - 2 |
189 |
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 |
190 |
IX = IX + INCX |
191 |
IY = IY + INCY |
192 |
30 CONTINUE |
193 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) + |
194 |
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) |
195 |
ELSE |
196 |
AP(KK+J-1) = DBLE(AP(KK+J-1)) |
197 |
END IF |
198 |
JX = JX + INCX |
199 |
JY = JY + INCY |
200 |
KK = KK + J |
201 |
40 CONTINUE |
202 |
END IF |
203 |
ELSE |
204 |
* |
205 |
* Form A when lower triangle is stored in AP. |
206 |
* |
207 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
208 |
DO 60 J = 1,N |
209 |
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN |
210 |
TEMP1 = ALPHA*DCONJG(Y(J)) |
211 |
TEMP2 = DCONJG(ALPHA*X(J)) |
212 |
AP(KK) = DBLE(AP(KK)) + |
213 |
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2) |
214 |
K = KK + 1 |
215 |
DO 50 I = J + 1,N |
216 |
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 |
217 |
K = K + 1 |
218 |
50 CONTINUE |
219 |
ELSE |
220 |
AP(KK) = DBLE(AP(KK)) |
221 |
END IF |
222 |
KK = KK + N - J + 1 |
223 |
60 CONTINUE |
224 |
ELSE |
225 |
DO 80 J = 1,N |
226 |
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN |
227 |
TEMP1 = ALPHA*DCONJG(Y(JY)) |
228 |
TEMP2 = DCONJG(ALPHA*X(JX)) |
229 |
AP(KK) = DBLE(AP(KK)) + |
230 |
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) |
231 |
IX = JX |
232 |
IY = JY |
233 |
DO 70 K = KK + 1,KK + N - J |
234 |
IX = IX + INCX |
235 |
IY = IY + INCY |
236 |
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 |
237 |
70 CONTINUE |
238 |
ELSE |
239 |
AP(KK) = DBLE(AP(KK)) |
240 |
END IF |
241 |
JX = JX + INCX |
242 |
JY = JY + INCY |
243 |
KK = KK + N - J + 1 |
244 |
80 CONTINUE |
245 |
END IF |
246 |
END IF |
247 |
* |
248 |
RETURN |
249 |
* |
250 |
* End of ZHPR2 . |
251 |
* |
252 |
END |