root / src / blas / zher2k.f @ 10
Historique | Voir | Annoter | Télécharger (12,86 ko)
1 |
SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE COMPLEX ALPHA |
4 |
DOUBLE PRECISION BETA |
5 |
INTEGER K,LDA,LDB,LDC,N |
6 |
CHARACTER TRANS,UPLO |
7 |
* .. |
8 |
* .. Array Arguments .. |
9 |
DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) |
10 |
* .. |
11 |
* |
12 |
* Purpose |
13 |
* ======= |
14 |
* |
15 |
* ZHER2K performs one of the hermitian rank 2k operations |
16 |
* |
17 |
* C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, |
18 |
* |
19 |
* or |
20 |
* |
21 |
* C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, |
22 |
* |
23 |
* where alpha and beta are scalars with beta real, C is an n by n |
24 |
* hermitian matrix and A and B are n by k matrices in the first case |
25 |
* and k by n matrices in the second case. |
26 |
* |
27 |
* Arguments |
28 |
* ========== |
29 |
* |
30 |
* UPLO - CHARACTER*1. |
31 |
* On entry, UPLO specifies whether the upper or lower |
32 |
* triangular part of the array C is to be referenced as |
33 |
* follows: |
34 |
* |
35 |
* UPLO = 'U' or 'u' Only the upper triangular part of C |
36 |
* is to be referenced. |
37 |
* |
38 |
* UPLO = 'L' or 'l' Only the lower triangular part of C |
39 |
* is to be referenced. |
40 |
* |
41 |
* Unchanged on exit. |
42 |
* |
43 |
* TRANS - CHARACTER*1. |
44 |
* On entry, TRANS specifies the operation to be performed as |
45 |
* follows: |
46 |
* |
47 |
* TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + |
48 |
* conjg( alpha )*B*conjg( A' ) + |
49 |
* beta*C. |
50 |
* |
51 |
* TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + |
52 |
* conjg( alpha )*conjg( B' )*A + |
53 |
* beta*C. |
54 |
* |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* N - INTEGER. |
58 |
* On entry, N specifies the order of the matrix C. N must be |
59 |
* at least zero. |
60 |
* Unchanged on exit. |
61 |
* |
62 |
* K - INTEGER. |
63 |
* On entry with TRANS = 'N' or 'n', K specifies the number |
64 |
* of columns of the matrices A and B, and on entry with |
65 |
* TRANS = 'C' or 'c', K specifies the number of rows of the |
66 |
* matrices A and B. K must be at least zero. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* ALPHA - COMPLEX*16 . |
70 |
* On entry, ALPHA specifies the scalar alpha. |
71 |
* Unchanged on exit. |
72 |
* |
73 |
* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is |
74 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
75 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
76 |
* part of the array A must contain the matrix A, otherwise |
77 |
* the leading k by n part of the array A must contain the |
78 |
* matrix A. |
79 |
* Unchanged on exit. |
80 |
* |
81 |
* LDA - INTEGER. |
82 |
* On entry, LDA specifies the first dimension of A as declared |
83 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
84 |
* then LDA must be at least max( 1, n ), otherwise LDA must |
85 |
* be at least max( 1, k ). |
86 |
* Unchanged on exit. |
87 |
* |
88 |
* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is |
89 |
* k when TRANS = 'N' or 'n', and is n otherwise. |
90 |
* Before entry with TRANS = 'N' or 'n', the leading n by k |
91 |
* part of the array B must contain the matrix B, otherwise |
92 |
* the leading k by n part of the array B must contain the |
93 |
* matrix B. |
94 |
* Unchanged on exit. |
95 |
* |
96 |
* LDB - INTEGER. |
97 |
* On entry, LDB specifies the first dimension of B as declared |
98 |
* in the calling (sub) program. When TRANS = 'N' or 'n' |
99 |
* then LDB must be at least max( 1, n ), otherwise LDB must |
100 |
* be at least max( 1, k ). |
101 |
* Unchanged on exit. |
102 |
* |
103 |
* BETA - DOUBLE PRECISION . |
104 |
* On entry, BETA specifies the scalar beta. |
105 |
* Unchanged on exit. |
106 |
* |
107 |
* C - COMPLEX*16 array of DIMENSION ( LDC, n ). |
108 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
109 |
* upper triangular part of the array C must contain the upper |
110 |
* triangular part of the hermitian matrix and the strictly |
111 |
* lower triangular part of C is not referenced. On exit, the |
112 |
* upper triangular part of the array C is overwritten by the |
113 |
* upper triangular part of the updated matrix. |
114 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
115 |
* lower triangular part of the array C must contain the lower |
116 |
* triangular part of the hermitian matrix and the strictly |
117 |
* upper triangular part of C is not referenced. On exit, the |
118 |
* lower triangular part of the array C is overwritten by the |
119 |
* lower triangular part of the updated matrix. |
120 |
* Note that the imaginary parts of the diagonal elements need |
121 |
* not be set, they are assumed to be zero, and on exit they |
122 |
* are set to zero. |
123 |
* |
124 |
* LDC - INTEGER. |
125 |
* On entry, LDC specifies the first dimension of C as declared |
126 |
* in the calling (sub) program. LDC must be at least |
127 |
* max( 1, n ). |
128 |
* Unchanged on exit. |
129 |
* |
130 |
* |
131 |
* Level 3 Blas routine. |
132 |
* |
133 |
* -- Written on 8-February-1989. |
134 |
* Jack Dongarra, Argonne National Laboratory. |
135 |
* Iain Duff, AERE Harwell. |
136 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
137 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
138 |
* |
139 |
* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. |
140 |
* Ed Anderson, Cray Research Inc. |
141 |
* |
142 |
* |
143 |
* .. External Functions .. |
144 |
LOGICAL LSAME |
145 |
EXTERNAL LSAME |
146 |
* .. |
147 |
* .. External Subroutines .. |
148 |
EXTERNAL XERBLA |
149 |
* .. |
150 |
* .. Intrinsic Functions .. |
151 |
INTRINSIC DBLE,DCONJG,MAX |
152 |
* .. |
153 |
* .. Local Scalars .. |
154 |
DOUBLE COMPLEX TEMP1,TEMP2 |
155 |
INTEGER I,INFO,J,L,NROWA |
156 |
LOGICAL UPPER |
157 |
* .. |
158 |
* .. Parameters .. |
159 |
DOUBLE PRECISION ONE |
160 |
PARAMETER (ONE=1.0D+0) |
161 |
DOUBLE COMPLEX ZERO |
162 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
163 |
* .. |
164 |
* |
165 |
* Test the input parameters. |
166 |
* |
167 |
IF (LSAME(TRANS,'N')) THEN |
168 |
NROWA = N |
169 |
ELSE |
170 |
NROWA = K |
171 |
END IF |
172 |
UPPER = LSAME(UPLO,'U') |
173 |
* |
174 |
INFO = 0 |
175 |
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
176 |
INFO = 1 |
177 |
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
178 |
+ (.NOT.LSAME(TRANS,'C'))) THEN |
179 |
INFO = 2 |
180 |
ELSE IF (N.LT.0) THEN |
181 |
INFO = 3 |
182 |
ELSE IF (K.LT.0) THEN |
183 |
INFO = 4 |
184 |
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
185 |
INFO = 7 |
186 |
ELSE IF (LDB.LT.MAX(1,NROWA)) THEN |
187 |
INFO = 9 |
188 |
ELSE IF (LDC.LT.MAX(1,N)) THEN |
189 |
INFO = 12 |
190 |
END IF |
191 |
IF (INFO.NE.0) THEN |
192 |
CALL XERBLA('ZHER2K',INFO) |
193 |
RETURN |
194 |
END IF |
195 |
* |
196 |
* Quick return if possible. |
197 |
* |
198 |
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
199 |
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
200 |
* |
201 |
* And when alpha.eq.zero. |
202 |
* |
203 |
IF (ALPHA.EQ.ZERO) THEN |
204 |
IF (UPPER) THEN |
205 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
206 |
DO 20 J = 1,N |
207 |
DO 10 I = 1,J |
208 |
C(I,J) = ZERO |
209 |
10 CONTINUE |
210 |
20 CONTINUE |
211 |
ELSE |
212 |
DO 40 J = 1,N |
213 |
DO 30 I = 1,J - 1 |
214 |
C(I,J) = BETA*C(I,J) |
215 |
30 CONTINUE |
216 |
C(J,J) = BETA*DBLE(C(J,J)) |
217 |
40 CONTINUE |
218 |
END IF |
219 |
ELSE |
220 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
221 |
DO 60 J = 1,N |
222 |
DO 50 I = J,N |
223 |
C(I,J) = ZERO |
224 |
50 CONTINUE |
225 |
60 CONTINUE |
226 |
ELSE |
227 |
DO 80 J = 1,N |
228 |
C(J,J) = BETA*DBLE(C(J,J)) |
229 |
DO 70 I = J + 1,N |
230 |
C(I,J) = BETA*C(I,J) |
231 |
70 CONTINUE |
232 |
80 CONTINUE |
233 |
END IF |
234 |
END IF |
235 |
RETURN |
236 |
END IF |
237 |
* |
238 |
* Start the operations. |
239 |
* |
240 |
IF (LSAME(TRANS,'N')) THEN |
241 |
* |
242 |
* Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + |
243 |
* C. |
244 |
* |
245 |
IF (UPPER) THEN |
246 |
DO 130 J = 1,N |
247 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
248 |
DO 90 I = 1,J |
249 |
C(I,J) = ZERO |
250 |
90 CONTINUE |
251 |
ELSE IF (BETA.NE.ONE) THEN |
252 |
DO 100 I = 1,J - 1 |
253 |
C(I,J) = BETA*C(I,J) |
254 |
100 CONTINUE |
255 |
C(J,J) = BETA*DBLE(C(J,J)) |
256 |
ELSE |
257 |
C(J,J) = DBLE(C(J,J)) |
258 |
END IF |
259 |
DO 120 L = 1,K |
260 |
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
261 |
TEMP1 = ALPHA*DCONJG(B(J,L)) |
262 |
TEMP2 = DCONJG(ALPHA*A(J,L)) |
263 |
DO 110 I = 1,J - 1 |
264 |
C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
265 |
+ B(I,L)*TEMP2 |
266 |
110 CONTINUE |
267 |
C(J,J) = DBLE(C(J,J)) + |
268 |
+ DBLE(A(J,L)*TEMP1+B(J,L)*TEMP2) |
269 |
END IF |
270 |
120 CONTINUE |
271 |
130 CONTINUE |
272 |
ELSE |
273 |
DO 180 J = 1,N |
274 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
275 |
DO 140 I = J,N |
276 |
C(I,J) = ZERO |
277 |
140 CONTINUE |
278 |
ELSE IF (BETA.NE.ONE) THEN |
279 |
DO 150 I = J + 1,N |
280 |
C(I,J) = BETA*C(I,J) |
281 |
150 CONTINUE |
282 |
C(J,J) = BETA*DBLE(C(J,J)) |
283 |
ELSE |
284 |
C(J,J) = DBLE(C(J,J)) |
285 |
END IF |
286 |
DO 170 L = 1,K |
287 |
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
288 |
TEMP1 = ALPHA*DCONJG(B(J,L)) |
289 |
TEMP2 = DCONJG(ALPHA*A(J,L)) |
290 |
DO 160 I = J + 1,N |
291 |
C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
292 |
+ B(I,L)*TEMP2 |
293 |
160 CONTINUE |
294 |
C(J,J) = DBLE(C(J,J)) + |
295 |
+ DBLE(A(J,L)*TEMP1+B(J,L)*TEMP2) |
296 |
END IF |
297 |
170 CONTINUE |
298 |
180 CONTINUE |
299 |
END IF |
300 |
ELSE |
301 |
* |
302 |
* Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + |
303 |
* C. |
304 |
* |
305 |
IF (UPPER) THEN |
306 |
DO 210 J = 1,N |
307 |
DO 200 I = 1,J |
308 |
TEMP1 = ZERO |
309 |
TEMP2 = ZERO |
310 |
DO 190 L = 1,K |
311 |
TEMP1 = TEMP1 + DCONJG(A(L,I))*B(L,J) |
312 |
TEMP2 = TEMP2 + DCONJG(B(L,I))*A(L,J) |
313 |
190 CONTINUE |
314 |
IF (I.EQ.J) THEN |
315 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
316 |
C(J,J) = DBLE(ALPHA*TEMP1+ |
317 |
+ DCONJG(ALPHA)*TEMP2) |
318 |
ELSE |
319 |
C(J,J) = BETA*DBLE(C(J,J)) + |
320 |
+ DBLE(ALPHA*TEMP1+ |
321 |
+ DCONJG(ALPHA)*TEMP2) |
322 |
END IF |
323 |
ELSE |
324 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
325 |
C(I,J) = ALPHA*TEMP1 + DCONJG(ALPHA)*TEMP2 |
326 |
ELSE |
327 |
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
328 |
+ DCONJG(ALPHA)*TEMP2 |
329 |
END IF |
330 |
END IF |
331 |
200 CONTINUE |
332 |
210 CONTINUE |
333 |
ELSE |
334 |
DO 240 J = 1,N |
335 |
DO 230 I = J,N |
336 |
TEMP1 = ZERO |
337 |
TEMP2 = ZERO |
338 |
DO 220 L = 1,K |
339 |
TEMP1 = TEMP1 + DCONJG(A(L,I))*B(L,J) |
340 |
TEMP2 = TEMP2 + DCONJG(B(L,I))*A(L,J) |
341 |
220 CONTINUE |
342 |
IF (I.EQ.J) THEN |
343 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
344 |
C(J,J) = DBLE(ALPHA*TEMP1+ |
345 |
+ DCONJG(ALPHA)*TEMP2) |
346 |
ELSE |
347 |
C(J,J) = BETA*DBLE(C(J,J)) + |
348 |
+ DBLE(ALPHA*TEMP1+ |
349 |
+ DCONJG(ALPHA)*TEMP2) |
350 |
END IF |
351 |
ELSE |
352 |
IF (BETA.EQ.DBLE(ZERO)) THEN |
353 |
C(I,J) = ALPHA*TEMP1 + DCONJG(ALPHA)*TEMP2 |
354 |
ELSE |
355 |
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
356 |
+ DCONJG(ALPHA)*TEMP2 |
357 |
END IF |
358 |
END IF |
359 |
230 CONTINUE |
360 |
240 CONTINUE |
361 |
END IF |
362 |
END IF |
363 |
* |
364 |
RETURN |
365 |
* |
366 |
* End of ZHER2K. |
367 |
* |
368 |
END |