Statistiques
| Révision :

root / src / blas / zgbmv.f @ 10

Historique | Voir | Annoter | Télécharger (9,54 ko)

1
      SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      DOUBLE COMPLEX ALPHA,BETA
4
      INTEGER INCX,INCY,KL,KU,LDA,M,N
5
      CHARACTER TRANS
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  ZGBMV  performs one of the matrix-vector operations
15
*
16
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or
17
*
18
*     y := alpha*conjg( A' )*x + beta*y,
19
*
20
*  where alpha and beta are scalars, x and y are vectors and A is an
21
*  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
22
*
23
*  Arguments
24
*  ==========
25
*
26
*  TRANS  - CHARACTER*1.
27
*           On entry, TRANS specifies the operation to be performed as
28
*           follows:
29
*
30
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
31
*
32
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
33
*
34
*              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.
35
*
36
*           Unchanged on exit.
37
*
38
*  M      - INTEGER.
39
*           On entry, M specifies the number of rows of the matrix A.
40
*           M must be at least zero.
41
*           Unchanged on exit.
42
*
43
*  N      - INTEGER.
44
*           On entry, N specifies the number of columns of the matrix A.
45
*           N must be at least zero.
46
*           Unchanged on exit.
47
*
48
*  KL     - INTEGER.
49
*           On entry, KL specifies the number of sub-diagonals of the
50
*           matrix A. KL must satisfy  0 .le. KL.
51
*           Unchanged on exit.
52
*
53
*  KU     - INTEGER.
54
*           On entry, KU specifies the number of super-diagonals of the
55
*           matrix A. KU must satisfy  0 .le. KU.
56
*           Unchanged on exit.
57
*
58
*  ALPHA  - COMPLEX*16      .
59
*           On entry, ALPHA specifies the scalar alpha.
60
*           Unchanged on exit.
61
*
62
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
63
*           Before entry, the leading ( kl + ku + 1 ) by n part of the
64
*           array A must contain the matrix of coefficients, supplied
65
*           column by column, with the leading diagonal of the matrix in
66
*           row ( ku + 1 ) of the array, the first super-diagonal
67
*           starting at position 2 in row ku, the first sub-diagonal
68
*           starting at position 1 in row ( ku + 2 ), and so on.
69
*           Elements in the array A that do not correspond to elements
70
*           in the band matrix (such as the top left ku by ku triangle)
71
*           are not referenced.
72
*           The following program segment will transfer a band matrix
73
*           from conventional full matrix storage to band storage:
74
*
75
*                 DO 20, J = 1, N
76
*                    K = KU + 1 - J
77
*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
78
*                       A( K + I, J ) = matrix( I, J )
79
*              10    CONTINUE
80
*              20 CONTINUE
81
*
82
*           Unchanged on exit.
83
*
84
*  LDA    - INTEGER.
85
*           On entry, LDA specifies the first dimension of A as declared
86
*           in the calling (sub) program. LDA must be at least
87
*           ( kl + ku + 1 ).
88
*           Unchanged on exit.
89
*
90
*  X      - COMPLEX*16       array of DIMENSION at least
91
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
92
*           and at least
93
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
94
*           Before entry, the incremented array X must contain the
95
*           vector x.
96
*           Unchanged on exit.
97
*
98
*  INCX   - INTEGER.
99
*           On entry, INCX specifies the increment for the elements of
100
*           X. INCX must not be zero.
101
*           Unchanged on exit.
102
*
103
*  BETA   - COMPLEX*16      .
104
*           On entry, BETA specifies the scalar beta. When BETA is
105
*           supplied as zero then Y need not be set on input.
106
*           Unchanged on exit.
107
*
108
*  Y      - COMPLEX*16       array of DIMENSION at least
109
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
110
*           and at least
111
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
112
*           Before entry, the incremented array Y must contain the
113
*           vector y. On exit, Y is overwritten by the updated vector y.
114
*
115
*
116
*  INCY   - INTEGER.
117
*           On entry, INCY specifies the increment for the elements of
118
*           Y. INCY must not be zero.
119
*           Unchanged on exit.
120
*
121
*
122
*  Level 2 Blas routine.
123
*
124
*  -- Written on 22-October-1986.
125
*     Jack Dongarra, Argonne National Lab.
126
*     Jeremy Du Croz, Nag Central Office.
127
*     Sven Hammarling, Nag Central Office.
128
*     Richard Hanson, Sandia National Labs.
129
*
130
*
131
*     .. Parameters ..
132
      DOUBLE COMPLEX ONE
133
      PARAMETER (ONE= (1.0D+0,0.0D+0))
134
      DOUBLE COMPLEX ZERO
135
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
136
*     ..
137
*     .. Local Scalars ..
138
      DOUBLE COMPLEX TEMP
139
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
140
      LOGICAL NOCONJ
141
*     ..
142
*     .. External Functions ..
143
      LOGICAL LSAME
144
      EXTERNAL LSAME
145
*     ..
146
*     .. External Subroutines ..
147
      EXTERNAL XERBLA
148
*     ..
149
*     .. Intrinsic Functions ..
150
      INTRINSIC DCONJG,MAX,MIN
151
*     ..
152
*
153
*     Test the input parameters.
154
*
155
      INFO = 0
156
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
157
     +    .NOT.LSAME(TRANS,'C')) THEN
158
          INFO = 1
159
      ELSE IF (M.LT.0) THEN
160
          INFO = 2
161
      ELSE IF (N.LT.0) THEN
162
          INFO = 3
163
      ELSE IF (KL.LT.0) THEN
164
          INFO = 4
165
      ELSE IF (KU.LT.0) THEN
166
          INFO = 5
167
      ELSE IF (LDA.LT. (KL+KU+1)) THEN
168
          INFO = 8
169
      ELSE IF (INCX.EQ.0) THEN
170
          INFO = 10
171
      ELSE IF (INCY.EQ.0) THEN
172
          INFO = 13
173
      END IF
174
      IF (INFO.NE.0) THEN
175
          CALL XERBLA('ZGBMV ',INFO)
176
          RETURN
177
      END IF
178
*
179
*     Quick return if possible.
180
*
181
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
182
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
183
*
184
      NOCONJ = LSAME(TRANS,'T')
185
*
186
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
187
*     up the start points in  X  and  Y.
188
*
189
      IF (LSAME(TRANS,'N')) THEN
190
          LENX = N
191
          LENY = M
192
      ELSE
193
          LENX = M
194
          LENY = N
195
      END IF
196
      IF (INCX.GT.0) THEN
197
          KX = 1
198
      ELSE
199
          KX = 1 - (LENX-1)*INCX
200
      END IF
201
      IF (INCY.GT.0) THEN
202
          KY = 1
203
      ELSE
204
          KY = 1 - (LENY-1)*INCY
205
      END IF
206
*
207
*     Start the operations. In this version the elements of A are
208
*     accessed sequentially with one pass through the band part of A.
209
*
210
*     First form  y := beta*y.
211
*
212
      IF (BETA.NE.ONE) THEN
213
          IF (INCY.EQ.1) THEN
214
              IF (BETA.EQ.ZERO) THEN
215
                  DO 10 I = 1,LENY
216
                      Y(I) = ZERO
217
   10             CONTINUE
218
              ELSE
219
                  DO 20 I = 1,LENY
220
                      Y(I) = BETA*Y(I)
221
   20             CONTINUE
222
              END IF
223
          ELSE
224
              IY = KY
225
              IF (BETA.EQ.ZERO) THEN
226
                  DO 30 I = 1,LENY
227
                      Y(IY) = ZERO
228
                      IY = IY + INCY
229
   30             CONTINUE
230
              ELSE
231
                  DO 40 I = 1,LENY
232
                      Y(IY) = BETA*Y(IY)
233
                      IY = IY + INCY
234
   40             CONTINUE
235
              END IF
236
          END IF
237
      END IF
238
      IF (ALPHA.EQ.ZERO) RETURN
239
      KUP1 = KU + 1
240
      IF (LSAME(TRANS,'N')) THEN
241
*
242
*        Form  y := alpha*A*x + y.
243
*
244
          JX = KX
245
          IF (INCY.EQ.1) THEN
246
              DO 60 J = 1,N
247
                  IF (X(JX).NE.ZERO) THEN
248
                      TEMP = ALPHA*X(JX)
249
                      K = KUP1 - J
250
                      DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
251
                          Y(I) = Y(I) + TEMP*A(K+I,J)
252
   50                 CONTINUE
253
                  END IF
254
                  JX = JX + INCX
255
   60         CONTINUE
256
          ELSE
257
              DO 80 J = 1,N
258
                  IF (X(JX).NE.ZERO) THEN
259
                      TEMP = ALPHA*X(JX)
260
                      IY = KY
261
                      K = KUP1 - J
262
                      DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
263
                          Y(IY) = Y(IY) + TEMP*A(K+I,J)
264
                          IY = IY + INCY
265
   70                 CONTINUE
266
                  END IF
267
                  JX = JX + INCX
268
                  IF (J.GT.KU) KY = KY + INCY
269
   80         CONTINUE
270
          END IF
271
      ELSE
272
*
273
*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
274
*
275
          JY = KY
276
          IF (INCX.EQ.1) THEN
277
              DO 110 J = 1,N
278
                  TEMP = ZERO
279
                  K = KUP1 - J
280
                  IF (NOCONJ) THEN
281
                      DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
282
                          TEMP = TEMP + A(K+I,J)*X(I)
283
   90                 CONTINUE
284
                  ELSE
285
                      DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
286
                          TEMP = TEMP + DCONJG(A(K+I,J))*X(I)
287
  100                 CONTINUE
288
                  END IF
289
                  Y(JY) = Y(JY) + ALPHA*TEMP
290
                  JY = JY + INCY
291
  110         CONTINUE
292
          ELSE
293
              DO 140 J = 1,N
294
                  TEMP = ZERO
295
                  IX = KX
296
                  K = KUP1 - J
297
                  IF (NOCONJ) THEN
298
                      DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
299
                          TEMP = TEMP + A(K+I,J)*X(IX)
300
                          IX = IX + INCX
301
  120                 CONTINUE
302
                  ELSE
303
                      DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
304
                          TEMP = TEMP + DCONJG(A(K+I,J))*X(IX)
305
                          IX = IX + INCX
306
  130                 CONTINUE
307
                  END IF
308
                  Y(JY) = Y(JY) + ALPHA*TEMP
309
                  JY = JY + INCY
310
                  IF (J.GT.KU) KX = KX + INCX
311
  140         CONTINUE
312
          END IF
313
      END IF
314
*
315
      RETURN
316
*
317
*     End of ZGBMV .
318
*
319
      END