Statistiques
| Révision :

root / src / blas / ssyr2k.f @ 10

Historique | Voir | Annoter | Télécharger (10,57 ko)

1
      SUBROUTINE SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
2
*     .. Scalar Arguments ..
3
      REAL ALPHA,BETA
4
      INTEGER K,LDA,LDB,LDC,N
5
      CHARACTER TRANS,UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  SSYR2K  performs one of the symmetric rank 2k operations
15
*
16
*     C := alpha*A*B' + alpha*B*A' + beta*C,
17
*
18
*  or
19
*
20
*     C := alpha*A'*B + alpha*B'*A + beta*C,
21
*
22
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
23
*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n
24
*  matrices in the second case.
25
*
26
*  Arguments
27
*  ==========
28
*
29
*  UPLO   - CHARACTER*1.
30
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
31
*           triangular  part  of the  array  C  is to be  referenced  as
32
*           follows:
33
*
34
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
35
*                                  is to be referenced.
36
*
37
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
38
*                                  is to be referenced.
39
*
40
*           Unchanged on exit.
41
*
42
*  TRANS  - CHARACTER*1.
43
*           On entry,  TRANS  specifies the operation to be performed as
44
*           follows:
45
*
46
*              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +
47
*                                        beta*C.
48
*
49
*              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +
50
*                                        beta*C.
51
*
52
*              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +
53
*                                        beta*C.
54
*
55
*           Unchanged on exit.
56
*
57
*  N      - INTEGER.
58
*           On entry,  N specifies the order of the matrix C.  N must be
59
*           at least zero.
60
*           Unchanged on exit.
61
*
62
*  K      - INTEGER.
63
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
64
*           of  columns  of the  matrices  A and B,  and on  entry  with
65
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
66
*           of rows of the matrices  A and B.  K must be at least  zero.
67
*           Unchanged on exit.
68
*
69
*  ALPHA  - REAL            .
70
*           On entry, ALPHA specifies the scalar alpha.
71
*           Unchanged on exit.
72
*
73
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
74
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
75
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
76
*           part of the array  A  must contain the matrix  A,  otherwise
77
*           the leading  k by n  part of the array  A  must contain  the
78
*           matrix A.
79
*           Unchanged on exit.
80
*
81
*  LDA    - INTEGER.
82
*           On entry, LDA specifies the first dimension of A as declared
83
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
84
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
85
*           be at least  max( 1, k ).
86
*           Unchanged on exit.
87
*
88
*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
89
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
90
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
91
*           part of the array  B  must contain the matrix  B,  otherwise
92
*           the leading  k by n  part of the array  B  must contain  the
93
*           matrix B.
94
*           Unchanged on exit.
95
*
96
*  LDB    - INTEGER.
97
*           On entry, LDB specifies the first dimension of B as declared
98
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
99
*           then  LDB must be at least  max( 1, n ), otherwise  LDB must
100
*           be at least  max( 1, k ).
101
*           Unchanged on exit.
102
*
103
*  BETA   - REAL            .
104
*           On entry, BETA specifies the scalar beta.
105
*           Unchanged on exit.
106
*
107
*  C      - REAL             array of DIMENSION ( LDC, n ).
108
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
109
*           upper triangular part of the array C must contain the upper
110
*           triangular part  of the  symmetric matrix  and the strictly
111
*           lower triangular part of C is not referenced.  On exit, the
112
*           upper triangular part of the array  C is overwritten by the
113
*           upper triangular part of the updated matrix.
114
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
115
*           lower triangular part of the array C must contain the lower
116
*           triangular part  of the  symmetric matrix  and the strictly
117
*           upper triangular part of C is not referenced.  On exit, the
118
*           lower triangular part of the array  C is overwritten by the
119
*           lower triangular part of the updated matrix.
120
*
121
*  LDC    - INTEGER.
122
*           On entry, LDC specifies the first dimension of C as declared
123
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
124
*           max( 1, n ).
125
*           Unchanged on exit.
126
*
127
*
128
*  Level 3 Blas routine.
129
*
130
*
131
*  -- Written on 8-February-1989.
132
*     Jack Dongarra, Argonne National Laboratory.
133
*     Iain Duff, AERE Harwell.
134
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
135
*     Sven Hammarling, Numerical Algorithms Group Ltd.
136
*
137
*
138
*     .. External Functions ..
139
      LOGICAL LSAME
140
      EXTERNAL LSAME
141
*     ..
142
*     .. External Subroutines ..
143
      EXTERNAL XERBLA
144
*     ..
145
*     .. Intrinsic Functions ..
146
      INTRINSIC MAX
147
*     ..
148
*     .. Local Scalars ..
149
      REAL TEMP1,TEMP2
150
      INTEGER I,INFO,J,L,NROWA
151
      LOGICAL UPPER
152
*     ..
153
*     .. Parameters ..
154
      REAL ONE,ZERO
155
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
156
*     ..
157
*
158
*     Test the input parameters.
159
*
160
      IF (LSAME(TRANS,'N')) THEN
161
          NROWA = N
162
      ELSE
163
          NROWA = K
164
      END IF
165
      UPPER = LSAME(UPLO,'U')
166
*
167
      INFO = 0
168
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
169
          INFO = 1
170
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
171
     +         (.NOT.LSAME(TRANS,'T')) .AND.
172
     +         (.NOT.LSAME(TRANS,'C'))) THEN
173
          INFO = 2
174
      ELSE IF (N.LT.0) THEN
175
          INFO = 3
176
      ELSE IF (K.LT.0) THEN
177
          INFO = 4
178
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
179
          INFO = 7
180
      ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
181
          INFO = 9
182
      ELSE IF (LDC.LT.MAX(1,N)) THEN
183
          INFO = 12
184
      END IF
185
      IF (INFO.NE.0) THEN
186
          CALL XERBLA('SSYR2K',INFO)
187
          RETURN
188
      END IF
189
*
190
*     Quick return if possible.
191
*
192
      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
193
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
194
*
195
*     And when  alpha.eq.zero.
196
*
197
      IF (ALPHA.EQ.ZERO) THEN
198
          IF (UPPER) THEN
199
              IF (BETA.EQ.ZERO) THEN
200
                  DO 20 J = 1,N
201
                      DO 10 I = 1,J
202
                          C(I,J) = ZERO
203
   10                 CONTINUE
204
   20             CONTINUE
205
              ELSE
206
                  DO 40 J = 1,N
207
                      DO 30 I = 1,J
208
                          C(I,J) = BETA*C(I,J)
209
   30                 CONTINUE
210
   40             CONTINUE
211
              END IF
212
          ELSE
213
              IF (BETA.EQ.ZERO) THEN
214
                  DO 60 J = 1,N
215
                      DO 50 I = J,N
216
                          C(I,J) = ZERO
217
   50                 CONTINUE
218
   60             CONTINUE
219
              ELSE
220
                  DO 80 J = 1,N
221
                      DO 70 I = J,N
222
                          C(I,J) = BETA*C(I,J)
223
   70                 CONTINUE
224
   80             CONTINUE
225
              END IF
226
          END IF
227
          RETURN
228
      END IF
229
*
230
*     Start the operations.
231
*
232
      IF (LSAME(TRANS,'N')) THEN
233
*
234
*        Form  C := alpha*A*B' + alpha*B*A' + C.
235
*
236
          IF (UPPER) THEN
237
              DO 130 J = 1,N
238
                  IF (BETA.EQ.ZERO) THEN
239
                      DO 90 I = 1,J
240
                          C(I,J) = ZERO
241
   90                 CONTINUE
242
                  ELSE IF (BETA.NE.ONE) THEN
243
                      DO 100 I = 1,J
244
                          C(I,J) = BETA*C(I,J)
245
  100                 CONTINUE
246
                  END IF
247
                  DO 120 L = 1,K
248
                      IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
249
                          TEMP1 = ALPHA*B(J,L)
250
                          TEMP2 = ALPHA*A(J,L)
251
                          DO 110 I = 1,J
252
                              C(I,J) = C(I,J) + A(I,L)*TEMP1 +
253
     +                                 B(I,L)*TEMP2
254
  110                     CONTINUE
255
                      END IF
256
  120             CONTINUE
257
  130         CONTINUE
258
          ELSE
259
              DO 180 J = 1,N
260
                  IF (BETA.EQ.ZERO) THEN
261
                      DO 140 I = J,N
262
                          C(I,J) = ZERO
263
  140                 CONTINUE
264
                  ELSE IF (BETA.NE.ONE) THEN
265
                      DO 150 I = J,N
266
                          C(I,J) = BETA*C(I,J)
267
  150                 CONTINUE
268
                  END IF
269
                  DO 170 L = 1,K
270
                      IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
271
                          TEMP1 = ALPHA*B(J,L)
272
                          TEMP2 = ALPHA*A(J,L)
273
                          DO 160 I = J,N
274
                              C(I,J) = C(I,J) + A(I,L)*TEMP1 +
275
     +                                 B(I,L)*TEMP2
276
  160                     CONTINUE
277
                      END IF
278
  170             CONTINUE
279
  180         CONTINUE
280
          END IF
281
      ELSE
282
*
283
*        Form  C := alpha*A'*B + alpha*B'*A + C.
284
*
285
          IF (UPPER) THEN
286
              DO 210 J = 1,N
287
                  DO 200 I = 1,J
288
                      TEMP1 = ZERO
289
                      TEMP2 = ZERO
290
                      DO 190 L = 1,K
291
                          TEMP1 = TEMP1 + A(L,I)*B(L,J)
292
                          TEMP2 = TEMP2 + B(L,I)*A(L,J)
293
  190                 CONTINUE
294
                      IF (BETA.EQ.ZERO) THEN
295
                          C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
296
                      ELSE
297
                          C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
298
     +                             ALPHA*TEMP2
299
                      END IF
300
  200             CONTINUE
301
  210         CONTINUE
302
          ELSE
303
              DO 240 J = 1,N
304
                  DO 230 I = J,N
305
                      TEMP1 = ZERO
306
                      TEMP2 = ZERO
307
                      DO 220 L = 1,K
308
                          TEMP1 = TEMP1 + A(L,I)*B(L,J)
309
                          TEMP2 = TEMP2 + B(L,I)*A(L,J)
310
  220                 CONTINUE
311
                      IF (BETA.EQ.ZERO) THEN
312
                          C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
313
                      ELSE
314
                          C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
315
     +                             ALPHA*TEMP2
316
                      END IF
317
  230             CONTINUE
318
  240         CONTINUE
319
          END IF
320
      END IF
321
*
322
      RETURN
323
*
324
*     End of SSYR2K.
325
*
326
      END