Statistiques
| Révision :

root / src / blas / ctrmv.f @ 10

Historique | Voir | Annoter | Télécharger (9,85 ko)

1
      SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,LDA,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      COMPLEX A(LDA,*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  CTRMV  performs one of the matrix-vector operations
14
*
15
*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
16
*
17
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18
*  upper or lower triangular matrix.
19
*
20
*  Arguments
21
*  ==========
22
*
23
*  UPLO   - CHARACTER*1.
24
*           On entry, UPLO specifies whether the matrix is an upper or
25
*           lower triangular matrix as follows:
26
*
27
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28
*
29
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30
*
31
*           Unchanged on exit.
32
*
33
*  TRANS  - CHARACTER*1.
34
*           On entry, TRANS specifies the operation to be performed as
35
*           follows:
36
*
37
*              TRANS = 'N' or 'n'   x := A*x.
38
*
39
*              TRANS = 'T' or 't'   x := A'*x.
40
*
41
*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
42
*
43
*           Unchanged on exit.
44
*
45
*  DIAG   - CHARACTER*1.
46
*           On entry, DIAG specifies whether or not A is unit
47
*           triangular as follows:
48
*
49
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50
*
51
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52
*                                  triangular.
53
*
54
*           Unchanged on exit.
55
*
56
*  N      - INTEGER.
57
*           On entry, N specifies the order of the matrix A.
58
*           N must be at least zero.
59
*           Unchanged on exit.
60
*
61
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
62
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
63
*           upper triangular part of the array A must contain the upper
64
*           triangular matrix and the strictly lower triangular part of
65
*           A is not referenced.
66
*           Before entry with UPLO = 'L' or 'l', the leading n by n
67
*           lower triangular part of the array A must contain the lower
68
*           triangular matrix and the strictly upper triangular part of
69
*           A is not referenced.
70
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
71
*           A are not referenced either, but are assumed to be unity.
72
*           Unchanged on exit.
73
*
74
*  LDA    - INTEGER.
75
*           On entry, LDA specifies the first dimension of A as declared
76
*           in the calling (sub) program. LDA must be at least
77
*           max( 1, n ).
78
*           Unchanged on exit.
79
*
80
*  X      - COMPLEX          array of dimension at least
81
*           ( 1 + ( n - 1 )*abs( INCX ) ).
82
*           Before entry, the incremented array X must contain the n
83
*           element vector x. On exit, X is overwritten with the
84
*           tranformed vector x.
85
*
86
*  INCX   - INTEGER.
87
*           On entry, INCX specifies the increment for the elements of
88
*           X. INCX must not be zero.
89
*           Unchanged on exit.
90
*
91
*
92
*  Level 2 Blas routine.
93
*
94
*  -- Written on 22-October-1986.
95
*     Jack Dongarra, Argonne National Lab.
96
*     Jeremy Du Croz, Nag Central Office.
97
*     Sven Hammarling, Nag Central Office.
98
*     Richard Hanson, Sandia National Labs.
99
*
100
*
101
*     .. Parameters ..
102
      COMPLEX ZERO
103
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
104
*     ..
105
*     .. Local Scalars ..
106
      COMPLEX TEMP
107
      INTEGER I,INFO,IX,J,JX,KX
108
      LOGICAL NOCONJ,NOUNIT
109
*     ..
110
*     .. External Functions ..
111
      LOGICAL LSAME
112
      EXTERNAL LSAME
113
*     ..
114
*     .. External Subroutines ..
115
      EXTERNAL XERBLA
116
*     ..
117
*     .. Intrinsic Functions ..
118
      INTRINSIC CONJG,MAX
119
*     ..
120
*
121
*     Test the input parameters.
122
*
123
      INFO = 0
124
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
125
          INFO = 1
126
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
127
     +         .NOT.LSAME(TRANS,'C')) THEN
128
          INFO = 2
129
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
130
          INFO = 3
131
      ELSE IF (N.LT.0) THEN
132
          INFO = 4
133
      ELSE IF (LDA.LT.MAX(1,N)) THEN
134
          INFO = 6
135
      ELSE IF (INCX.EQ.0) THEN
136
          INFO = 8
137
      END IF
138
      IF (INFO.NE.0) THEN
139
          CALL XERBLA('CTRMV ',INFO)
140
          RETURN
141
      END IF
142
*
143
*     Quick return if possible.
144
*
145
      IF (N.EQ.0) RETURN
146
*
147
      NOCONJ = LSAME(TRANS,'T')
148
      NOUNIT = LSAME(DIAG,'N')
149
*
150
*     Set up the start point in X if the increment is not unity. This
151
*     will be  ( N - 1 )*INCX  too small for descending loops.
152
*
153
      IF (INCX.LE.0) THEN
154
          KX = 1 - (N-1)*INCX
155
      ELSE IF (INCX.NE.1) THEN
156
          KX = 1
157
      END IF
158
*
159
*     Start the operations. In this version the elements of A are
160
*     accessed sequentially with one pass through A.
161
*
162
      IF (LSAME(TRANS,'N')) THEN
163
*
164
*        Form  x := A*x.
165
*
166
          IF (LSAME(UPLO,'U')) THEN
167
              IF (INCX.EQ.1) THEN
168
                  DO 20 J = 1,N
169
                      IF (X(J).NE.ZERO) THEN
170
                          TEMP = X(J)
171
                          DO 10 I = 1,J - 1
172
                              X(I) = X(I) + TEMP*A(I,J)
173
   10                     CONTINUE
174
                          IF (NOUNIT) X(J) = X(J)*A(J,J)
175
                      END IF
176
   20             CONTINUE
177
              ELSE
178
                  JX = KX
179
                  DO 40 J = 1,N
180
                      IF (X(JX).NE.ZERO) THEN
181
                          TEMP = X(JX)
182
                          IX = KX
183
                          DO 30 I = 1,J - 1
184
                              X(IX) = X(IX) + TEMP*A(I,J)
185
                              IX = IX + INCX
186
   30                     CONTINUE
187
                          IF (NOUNIT) X(JX) = X(JX)*A(J,J)
188
                      END IF
189
                      JX = JX + INCX
190
   40             CONTINUE
191
              END IF
192
          ELSE
193
              IF (INCX.EQ.1) THEN
194
                  DO 60 J = N,1,-1
195
                      IF (X(J).NE.ZERO) THEN
196
                          TEMP = X(J)
197
                          DO 50 I = N,J + 1,-1
198
                              X(I) = X(I) + TEMP*A(I,J)
199
   50                     CONTINUE
200
                          IF (NOUNIT) X(J) = X(J)*A(J,J)
201
                      END IF
202
   60             CONTINUE
203
              ELSE
204
                  KX = KX + (N-1)*INCX
205
                  JX = KX
206
                  DO 80 J = N,1,-1
207
                      IF (X(JX).NE.ZERO) THEN
208
                          TEMP = X(JX)
209
                          IX = KX
210
                          DO 70 I = N,J + 1,-1
211
                              X(IX) = X(IX) + TEMP*A(I,J)
212
                              IX = IX - INCX
213
   70                     CONTINUE
214
                          IF (NOUNIT) X(JX) = X(JX)*A(J,J)
215
                      END IF
216
                      JX = JX - INCX
217
   80             CONTINUE
218
              END IF
219
          END IF
220
      ELSE
221
*
222
*        Form  x := A'*x  or  x := conjg( A' )*x.
223
*
224
          IF (LSAME(UPLO,'U')) THEN
225
              IF (INCX.EQ.1) THEN
226
                  DO 110 J = N,1,-1
227
                      TEMP = X(J)
228
                      IF (NOCONJ) THEN
229
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
230
                          DO 90 I = J - 1,1,-1
231
                              TEMP = TEMP + A(I,J)*X(I)
232
   90                     CONTINUE
233
                      ELSE
234
                          IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
235
                          DO 100 I = J - 1,1,-1
236
                              TEMP = TEMP + CONJG(A(I,J))*X(I)
237
  100                     CONTINUE
238
                      END IF
239
                      X(J) = TEMP
240
  110             CONTINUE
241
              ELSE
242
                  JX = KX + (N-1)*INCX
243
                  DO 140 J = N,1,-1
244
                      TEMP = X(JX)
245
                      IX = JX
246
                      IF (NOCONJ) THEN
247
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
248
                          DO 120 I = J - 1,1,-1
249
                              IX = IX - INCX
250
                              TEMP = TEMP + A(I,J)*X(IX)
251
  120                     CONTINUE
252
                      ELSE
253
                          IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
254
                          DO 130 I = J - 1,1,-1
255
                              IX = IX - INCX
256
                              TEMP = TEMP + CONJG(A(I,J))*X(IX)
257
  130                     CONTINUE
258
                      END IF
259
                      X(JX) = TEMP
260
                      JX = JX - INCX
261
  140             CONTINUE
262
              END IF
263
          ELSE
264
              IF (INCX.EQ.1) THEN
265
                  DO 170 J = 1,N
266
                      TEMP = X(J)
267
                      IF (NOCONJ) THEN
268
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
269
                          DO 150 I = J + 1,N
270
                              TEMP = TEMP + A(I,J)*X(I)
271
  150                     CONTINUE
272
                      ELSE
273
                          IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
274
                          DO 160 I = J + 1,N
275
                              TEMP = TEMP + CONJG(A(I,J))*X(I)
276
  160                     CONTINUE
277
                      END IF
278
                      X(J) = TEMP
279
  170             CONTINUE
280
              ELSE
281
                  JX = KX
282
                  DO 200 J = 1,N
283
                      TEMP = X(JX)
284
                      IX = JX
285
                      IF (NOCONJ) THEN
286
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
287
                          DO 180 I = J + 1,N
288
                              IX = IX + INCX
289
                              TEMP = TEMP + A(I,J)*X(IX)
290
  180                     CONTINUE
291
                      ELSE
292
                          IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J))
293
                          DO 190 I = J + 1,N
294
                              IX = IX + INCX
295
                              TEMP = TEMP + CONJG(A(I,J))*X(IX)
296
  190                     CONTINUE
297
                      END IF
298
                      X(JX) = TEMP
299
                      JX = JX + INCX
300
  200             CONTINUE
301
              END IF
302
          END IF
303
      END IF
304
*
305
      RETURN
306
*
307
*     End of CTRMV .
308
*
309
      END