root / src / blas / ctbmv.f @ 10
Historique | Voir | Annoter | Télécharger (12,23 ko)
1 |
SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,K,LDA,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
COMPLEX A(LDA,*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* CTBMV performs one of the matrix-vector operations |
14 |
* |
15 |
* x := A*x, or x := A'*x, or x := conjg( A' )*x, |
16 |
* |
17 |
* where x is an n element vector and A is an n by n unit, or non-unit, |
18 |
* upper or lower triangular band matrix, with ( k + 1 ) diagonals. |
19 |
* |
20 |
* Arguments |
21 |
* ========== |
22 |
* |
23 |
* UPLO - CHARACTER*1. |
24 |
* On entry, UPLO specifies whether the matrix is an upper or |
25 |
* lower triangular matrix as follows: |
26 |
* |
27 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
28 |
* |
29 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
30 |
* |
31 |
* Unchanged on exit. |
32 |
* |
33 |
* TRANS - CHARACTER*1. |
34 |
* On entry, TRANS specifies the operation to be performed as |
35 |
* follows: |
36 |
* |
37 |
* TRANS = 'N' or 'n' x := A*x. |
38 |
* |
39 |
* TRANS = 'T' or 't' x := A'*x. |
40 |
* |
41 |
* TRANS = 'C' or 'c' x := conjg( A' )*x. |
42 |
* |
43 |
* Unchanged on exit. |
44 |
* |
45 |
* DIAG - CHARACTER*1. |
46 |
* On entry, DIAG specifies whether or not A is unit |
47 |
* triangular as follows: |
48 |
* |
49 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
50 |
* |
51 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
52 |
* triangular. |
53 |
* |
54 |
* Unchanged on exit. |
55 |
* |
56 |
* N - INTEGER. |
57 |
* On entry, N specifies the order of the matrix A. |
58 |
* N must be at least zero. |
59 |
* Unchanged on exit. |
60 |
* |
61 |
* K - INTEGER. |
62 |
* On entry with UPLO = 'U' or 'u', K specifies the number of |
63 |
* super-diagonals of the matrix A. |
64 |
* On entry with UPLO = 'L' or 'l', K specifies the number of |
65 |
* sub-diagonals of the matrix A. |
66 |
* K must satisfy 0 .le. K. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* A - COMPLEX array of DIMENSION ( LDA, n ). |
70 |
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
71 |
* by n part of the array A must contain the upper triangular |
72 |
* band part of the matrix of coefficients, supplied column by |
73 |
* column, with the leading diagonal of the matrix in row |
74 |
* ( k + 1 ) of the array, the first super-diagonal starting at |
75 |
* position 2 in row k, and so on. The top left k by k triangle |
76 |
* of the array A is not referenced. |
77 |
* The following program segment will transfer an upper |
78 |
* triangular band matrix from conventional full matrix storage |
79 |
* to band storage: |
80 |
* |
81 |
* DO 20, J = 1, N |
82 |
* M = K + 1 - J |
83 |
* DO 10, I = MAX( 1, J - K ), J |
84 |
* A( M + I, J ) = matrix( I, J ) |
85 |
* 10 CONTINUE |
86 |
* 20 CONTINUE |
87 |
* |
88 |
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
89 |
* by n part of the array A must contain the lower triangular |
90 |
* band part of the matrix of coefficients, supplied column by |
91 |
* column, with the leading diagonal of the matrix in row 1 of |
92 |
* the array, the first sub-diagonal starting at position 1 in |
93 |
* row 2, and so on. The bottom right k by k triangle of the |
94 |
* array A is not referenced. |
95 |
* The following program segment will transfer a lower |
96 |
* triangular band matrix from conventional full matrix storage |
97 |
* to band storage: |
98 |
* |
99 |
* DO 20, J = 1, N |
100 |
* M = 1 - J |
101 |
* DO 10, I = J, MIN( N, J + K ) |
102 |
* A( M + I, J ) = matrix( I, J ) |
103 |
* 10 CONTINUE |
104 |
* 20 CONTINUE |
105 |
* |
106 |
* Note that when DIAG = 'U' or 'u' the elements of the array A |
107 |
* corresponding to the diagonal elements of the matrix are not |
108 |
* referenced, but are assumed to be unity. |
109 |
* Unchanged on exit. |
110 |
* |
111 |
* LDA - INTEGER. |
112 |
* On entry, LDA specifies the first dimension of A as declared |
113 |
* in the calling (sub) program. LDA must be at least |
114 |
* ( k + 1 ). |
115 |
* Unchanged on exit. |
116 |
* |
117 |
* X - COMPLEX array of dimension at least |
118 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
119 |
* Before entry, the incremented array X must contain the n |
120 |
* element vector x. On exit, X is overwritten with the |
121 |
* tranformed vector x. |
122 |
* |
123 |
* INCX - INTEGER. |
124 |
* On entry, INCX specifies the increment for the elements of |
125 |
* X. INCX must not be zero. |
126 |
* Unchanged on exit. |
127 |
* |
128 |
* |
129 |
* Level 2 Blas routine. |
130 |
* |
131 |
* -- Written on 22-October-1986. |
132 |
* Jack Dongarra, Argonne National Lab. |
133 |
* Jeremy Du Croz, Nag Central Office. |
134 |
* Sven Hammarling, Nag Central Office. |
135 |
* Richard Hanson, Sandia National Labs. |
136 |
* |
137 |
* |
138 |
* .. Parameters .. |
139 |
COMPLEX ZERO |
140 |
PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
141 |
* .. |
142 |
* .. Local Scalars .. |
143 |
COMPLEX TEMP |
144 |
INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L |
145 |
LOGICAL NOCONJ,NOUNIT |
146 |
* .. |
147 |
* .. External Functions .. |
148 |
LOGICAL LSAME |
149 |
EXTERNAL LSAME |
150 |
* .. |
151 |
* .. External Subroutines .. |
152 |
EXTERNAL XERBLA |
153 |
* .. |
154 |
* .. Intrinsic Functions .. |
155 |
INTRINSIC CONJG,MAX,MIN |
156 |
* .. |
157 |
* |
158 |
* Test the input parameters. |
159 |
* |
160 |
INFO = 0 |
161 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
162 |
INFO = 1 |
163 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
164 |
+ .NOT.LSAME(TRANS,'C')) THEN |
165 |
INFO = 2 |
166 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
167 |
INFO = 3 |
168 |
ELSE IF (N.LT.0) THEN |
169 |
INFO = 4 |
170 |
ELSE IF (K.LT.0) THEN |
171 |
INFO = 5 |
172 |
ELSE IF (LDA.LT. (K+1)) THEN |
173 |
INFO = 7 |
174 |
ELSE IF (INCX.EQ.0) THEN |
175 |
INFO = 9 |
176 |
END IF |
177 |
IF (INFO.NE.0) THEN |
178 |
CALL XERBLA('CTBMV ',INFO) |
179 |
RETURN |
180 |
END IF |
181 |
* |
182 |
* Quick return if possible. |
183 |
* |
184 |
IF (N.EQ.0) RETURN |
185 |
* |
186 |
NOCONJ = LSAME(TRANS,'T') |
187 |
NOUNIT = LSAME(DIAG,'N') |
188 |
* |
189 |
* Set up the start point in X if the increment is not unity. This |
190 |
* will be ( N - 1 )*INCX too small for descending loops. |
191 |
* |
192 |
IF (INCX.LE.0) THEN |
193 |
KX = 1 - (N-1)*INCX |
194 |
ELSE IF (INCX.NE.1) THEN |
195 |
KX = 1 |
196 |
END IF |
197 |
* |
198 |
* Start the operations. In this version the elements of A are |
199 |
* accessed sequentially with one pass through A. |
200 |
* |
201 |
IF (LSAME(TRANS,'N')) THEN |
202 |
* |
203 |
* Form x := A*x. |
204 |
* |
205 |
IF (LSAME(UPLO,'U')) THEN |
206 |
KPLUS1 = K + 1 |
207 |
IF (INCX.EQ.1) THEN |
208 |
DO 20 J = 1,N |
209 |
IF (X(J).NE.ZERO) THEN |
210 |
TEMP = X(J) |
211 |
L = KPLUS1 - J |
212 |
DO 10 I = MAX(1,J-K),J - 1 |
213 |
X(I) = X(I) + TEMP*A(L+I,J) |
214 |
10 CONTINUE |
215 |
IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) |
216 |
END IF |
217 |
20 CONTINUE |
218 |
ELSE |
219 |
JX = KX |
220 |
DO 40 J = 1,N |
221 |
IF (X(JX).NE.ZERO) THEN |
222 |
TEMP = X(JX) |
223 |
IX = KX |
224 |
L = KPLUS1 - J |
225 |
DO 30 I = MAX(1,J-K),J - 1 |
226 |
X(IX) = X(IX) + TEMP*A(L+I,J) |
227 |
IX = IX + INCX |
228 |
30 CONTINUE |
229 |
IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) |
230 |
END IF |
231 |
JX = JX + INCX |
232 |
IF (J.GT.K) KX = KX + INCX |
233 |
40 CONTINUE |
234 |
END IF |
235 |
ELSE |
236 |
IF (INCX.EQ.1) THEN |
237 |
DO 60 J = N,1,-1 |
238 |
IF (X(J).NE.ZERO) THEN |
239 |
TEMP = X(J) |
240 |
L = 1 - J |
241 |
DO 50 I = MIN(N,J+K),J + 1,-1 |
242 |
X(I) = X(I) + TEMP*A(L+I,J) |
243 |
50 CONTINUE |
244 |
IF (NOUNIT) X(J) = X(J)*A(1,J) |
245 |
END IF |
246 |
60 CONTINUE |
247 |
ELSE |
248 |
KX = KX + (N-1)*INCX |
249 |
JX = KX |
250 |
DO 80 J = N,1,-1 |
251 |
IF (X(JX).NE.ZERO) THEN |
252 |
TEMP = X(JX) |
253 |
IX = KX |
254 |
L = 1 - J |
255 |
DO 70 I = MIN(N,J+K),J + 1,-1 |
256 |
X(IX) = X(IX) + TEMP*A(L+I,J) |
257 |
IX = IX - INCX |
258 |
70 CONTINUE |
259 |
IF (NOUNIT) X(JX) = X(JX)*A(1,J) |
260 |
END IF |
261 |
JX = JX - INCX |
262 |
IF ((N-J).GE.K) KX = KX - INCX |
263 |
80 CONTINUE |
264 |
END IF |
265 |
END IF |
266 |
ELSE |
267 |
* |
268 |
* Form x := A'*x or x := conjg( A' )*x. |
269 |
* |
270 |
IF (LSAME(UPLO,'U')) THEN |
271 |
KPLUS1 = K + 1 |
272 |
IF (INCX.EQ.1) THEN |
273 |
DO 110 J = N,1,-1 |
274 |
TEMP = X(J) |
275 |
L = KPLUS1 - J |
276 |
IF (NOCONJ) THEN |
277 |
IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) |
278 |
DO 90 I = J - 1,MAX(1,J-K),-1 |
279 |
TEMP = TEMP + A(L+I,J)*X(I) |
280 |
90 CONTINUE |
281 |
ELSE |
282 |
IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) |
283 |
DO 100 I = J - 1,MAX(1,J-K),-1 |
284 |
TEMP = TEMP + CONJG(A(L+I,J))*X(I) |
285 |
100 CONTINUE |
286 |
END IF |
287 |
X(J) = TEMP |
288 |
110 CONTINUE |
289 |
ELSE |
290 |
KX = KX + (N-1)*INCX |
291 |
JX = KX |
292 |
DO 140 J = N,1,-1 |
293 |
TEMP = X(JX) |
294 |
KX = KX - INCX |
295 |
IX = KX |
296 |
L = KPLUS1 - J |
297 |
IF (NOCONJ) THEN |
298 |
IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) |
299 |
DO 120 I = J - 1,MAX(1,J-K),-1 |
300 |
TEMP = TEMP + A(L+I,J)*X(IX) |
301 |
IX = IX - INCX |
302 |
120 CONTINUE |
303 |
ELSE |
304 |
IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) |
305 |
DO 130 I = J - 1,MAX(1,J-K),-1 |
306 |
TEMP = TEMP + CONJG(A(L+I,J))*X(IX) |
307 |
IX = IX - INCX |
308 |
130 CONTINUE |
309 |
END IF |
310 |
X(JX) = TEMP |
311 |
JX = JX - INCX |
312 |
140 CONTINUE |
313 |
END IF |
314 |
ELSE |
315 |
IF (INCX.EQ.1) THEN |
316 |
DO 170 J = 1,N |
317 |
TEMP = X(J) |
318 |
L = 1 - J |
319 |
IF (NOCONJ) THEN |
320 |
IF (NOUNIT) TEMP = TEMP*A(1,J) |
321 |
DO 150 I = J + 1,MIN(N,J+K) |
322 |
TEMP = TEMP + A(L+I,J)*X(I) |
323 |
150 CONTINUE |
324 |
ELSE |
325 |
IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) |
326 |
DO 160 I = J + 1,MIN(N,J+K) |
327 |
TEMP = TEMP + CONJG(A(L+I,J))*X(I) |
328 |
160 CONTINUE |
329 |
END IF |
330 |
X(J) = TEMP |
331 |
170 CONTINUE |
332 |
ELSE |
333 |
JX = KX |
334 |
DO 200 J = 1,N |
335 |
TEMP = X(JX) |
336 |
KX = KX + INCX |
337 |
IX = KX |
338 |
L = 1 - J |
339 |
IF (NOCONJ) THEN |
340 |
IF (NOUNIT) TEMP = TEMP*A(1,J) |
341 |
DO 180 I = J + 1,MIN(N,J+K) |
342 |
TEMP = TEMP + A(L+I,J)*X(IX) |
343 |
IX = IX + INCX |
344 |
180 CONTINUE |
345 |
ELSE |
346 |
IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) |
347 |
DO 190 I = J + 1,MIN(N,J+K) |
348 |
TEMP = TEMP + CONJG(A(L+I,J))*X(IX) |
349 |
IX = IX + INCX |
350 |
190 CONTINUE |
351 |
END IF |
352 |
X(JX) = TEMP |
353 |
JX = JX + INCX |
354 |
200 CONTINUE |
355 |
END IF |
356 |
END IF |
357 |
END IF |
358 |
* |
359 |
RETURN |
360 |
* |
361 |
* End of CTBMV . |
362 |
* |
363 |
END |