Statistiques
| Révision :

root / src / blas / chpmv.f @ 10

Historique | Voir | Annoter | Télécharger (7,98 ko)

1
      SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      COMPLEX ALPHA,BETA
4
      INTEGER INCX,INCY,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      COMPLEX AP(*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  CHPMV  performs the matrix-vector operation
15
*
16
*     y := alpha*A*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are n element vectors and
19
*  A is an n by n hermitian matrix, supplied in packed form.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the matrix A is supplied in the packed
27
*           array AP as follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  supplied in AP.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  supplied in AP.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - COMPLEX         .
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  AP     - COMPLEX          array of DIMENSION at least
47
*           ( ( n*( n + 1 ) )/2 ).
48
*           Before entry with UPLO = 'U' or 'u', the array AP must
49
*           contain the upper triangular part of the hermitian matrix
50
*           packed sequentially, column by column, so that AP( 1 )
51
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
52
*           and a( 2, 2 ) respectively, and so on.
53
*           Before entry with UPLO = 'L' or 'l', the array AP must
54
*           contain the lower triangular part of the hermitian matrix
55
*           packed sequentially, column by column, so that AP( 1 )
56
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
57
*           and a( 3, 1 ) respectively, and so on.
58
*           Note that the imaginary parts of the diagonal elements need
59
*           not be set and are assumed to be zero.
60
*           Unchanged on exit.
61
*
62
*  X      - COMPLEX          array of dimension at least
63
*           ( 1 + ( n - 1 )*abs( INCX ) ).
64
*           Before entry, the incremented array X must contain the n
65
*           element vector x.
66
*           Unchanged on exit.
67
*
68
*  INCX   - INTEGER.
69
*           On entry, INCX specifies the increment for the elements of
70
*           X. INCX must not be zero.
71
*           Unchanged on exit.
72
*
73
*  BETA   - COMPLEX         .
74
*           On entry, BETA specifies the scalar beta. When BETA is
75
*           supplied as zero then Y need not be set on input.
76
*           Unchanged on exit.
77
*
78
*  Y      - COMPLEX          array of dimension at least
79
*           ( 1 + ( n - 1 )*abs( INCY ) ).
80
*           Before entry, the incremented array Y must contain the n
81
*           element vector y. On exit, Y is overwritten by the updated
82
*           vector y.
83
*
84
*  INCY   - INTEGER.
85
*           On entry, INCY specifies the increment for the elements of
86
*           Y. INCY must not be zero.
87
*           Unchanged on exit.
88
*
89
*
90
*  Level 2 Blas routine.
91
*
92
*  -- Written on 22-October-1986.
93
*     Jack Dongarra, Argonne National Lab.
94
*     Jeremy Du Croz, Nag Central Office.
95
*     Sven Hammarling, Nag Central Office.
96
*     Richard Hanson, Sandia National Labs.
97
*
98
*
99
*     .. Parameters ..
100
      COMPLEX ONE
101
      PARAMETER (ONE= (1.0E+0,0.0E+0))
102
      COMPLEX ZERO
103
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
104
*     ..
105
*     .. Local Scalars ..
106
      COMPLEX TEMP1,TEMP2
107
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
108
*     ..
109
*     .. External Functions ..
110
      LOGICAL LSAME
111
      EXTERNAL LSAME
112
*     ..
113
*     .. External Subroutines ..
114
      EXTERNAL XERBLA
115
*     ..
116
*     .. Intrinsic Functions ..
117
      INTRINSIC CONJG,REAL
118
*     ..
119
*
120
*     Test the input parameters.
121
*
122
      INFO = 0
123
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
124
          INFO = 1
125
      ELSE IF (N.LT.0) THEN
126
          INFO = 2
127
      ELSE IF (INCX.EQ.0) THEN
128
          INFO = 6
129
      ELSE IF (INCY.EQ.0) THEN
130
          INFO = 9
131
      END IF
132
      IF (INFO.NE.0) THEN
133
          CALL XERBLA('CHPMV ',INFO)
134
          RETURN
135
      END IF
136
*
137
*     Quick return if possible.
138
*
139
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
140
*
141
*     Set up the start points in  X  and  Y.
142
*
143
      IF (INCX.GT.0) THEN
144
          KX = 1
145
      ELSE
146
          KX = 1 - (N-1)*INCX
147
      END IF
148
      IF (INCY.GT.0) THEN
149
          KY = 1
150
      ELSE
151
          KY = 1 - (N-1)*INCY
152
      END IF
153
*
154
*     Start the operations. In this version the elements of the array AP
155
*     are accessed sequentially with one pass through AP.
156
*
157
*     First form  y := beta*y.
158
*
159
      IF (BETA.NE.ONE) THEN
160
          IF (INCY.EQ.1) THEN
161
              IF (BETA.EQ.ZERO) THEN
162
                  DO 10 I = 1,N
163
                      Y(I) = ZERO
164
   10             CONTINUE
165
              ELSE
166
                  DO 20 I = 1,N
167
                      Y(I) = BETA*Y(I)
168
   20             CONTINUE
169
              END IF
170
          ELSE
171
              IY = KY
172
              IF (BETA.EQ.ZERO) THEN
173
                  DO 30 I = 1,N
174
                      Y(IY) = ZERO
175
                      IY = IY + INCY
176
   30             CONTINUE
177
              ELSE
178
                  DO 40 I = 1,N
179
                      Y(IY) = BETA*Y(IY)
180
                      IY = IY + INCY
181
   40             CONTINUE
182
              END IF
183
          END IF
184
      END IF
185
      IF (ALPHA.EQ.ZERO) RETURN
186
      KK = 1
187
      IF (LSAME(UPLO,'U')) THEN
188
*
189
*        Form  y  when AP contains the upper triangle.
190
*
191
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
192
              DO 60 J = 1,N
193
                  TEMP1 = ALPHA*X(J)
194
                  TEMP2 = ZERO
195
                  K = KK
196
                  DO 50 I = 1,J - 1
197
                      Y(I) = Y(I) + TEMP1*AP(K)
198
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
199
                      K = K + 1
200
   50             CONTINUE
201
                  Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
202
                  KK = KK + J
203
   60         CONTINUE
204
          ELSE
205
              JX = KX
206
              JY = KY
207
              DO 80 J = 1,N
208
                  TEMP1 = ALPHA*X(JX)
209
                  TEMP2 = ZERO
210
                  IX = KX
211
                  IY = KY
212
                  DO 70 K = KK,KK + J - 2
213
                      Y(IY) = Y(IY) + TEMP1*AP(K)
214
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
215
                      IX = IX + INCX
216
                      IY = IY + INCY
217
   70             CONTINUE
218
                  Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
219
                  JX = JX + INCX
220
                  JY = JY + INCY
221
                  KK = KK + J
222
   80         CONTINUE
223
          END IF
224
      ELSE
225
*
226
*        Form  y  when AP contains the lower triangle.
227
*
228
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
229
              DO 100 J = 1,N
230
                  TEMP1 = ALPHA*X(J)
231
                  TEMP2 = ZERO
232
                  Y(J) = Y(J) + TEMP1*REAL(AP(KK))
233
                  K = KK + 1
234
                  DO 90 I = J + 1,N
235
                      Y(I) = Y(I) + TEMP1*AP(K)
236
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
237
                      K = K + 1
238
   90             CONTINUE
239
                  Y(J) = Y(J) + ALPHA*TEMP2
240
                  KK = KK + (N-J+1)
241
  100         CONTINUE
242
          ELSE
243
              JX = KX
244
              JY = KY
245
              DO 120 J = 1,N
246
                  TEMP1 = ALPHA*X(JX)
247
                  TEMP2 = ZERO
248
                  Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
249
                  IX = JX
250
                  IY = JY
251
                  DO 110 K = KK + 1,KK + N - J
252
                      IX = IX + INCX
253
                      IY = IY + INCY
254
                      Y(IY) = Y(IY) + TEMP1*AP(K)
255
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
256
  110             CONTINUE
257
                  Y(JY) = Y(JY) + ALPHA*TEMP2
258
                  JX = JX + INCX
259
                  JY = JY + INCY
260
                  KK = KK + (N-J+1)
261
  120         CONTINUE
262
          END IF
263
      END IF
264
*
265
      RETURN
266
*
267
*     End of CHPMV .
268
*
269
      END