root / src / lapack / double / dgeqrf.f @ 1
Historique | Voir | Annoter | Télécharger (5,74 ko)
1 |
SUBROUTINE DGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) |
---|---|
2 |
* |
3 |
* -- LAPACK routine (version 3.2) -- |
4 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 |
* November 2006 |
7 |
* |
8 |
* .. Scalar Arguments .. |
9 |
INTEGER INFO, LDA, LWORK, M, N |
10 |
* .. |
11 |
* .. Array Arguments .. |
12 |
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) |
13 |
* .. |
14 |
* |
15 |
* Purpose |
16 |
* ======= |
17 |
* |
18 |
* DGEQRF computes a QR factorization of a real M-by-N matrix A: |
19 |
* A = Q * R. |
20 |
* |
21 |
* Arguments |
22 |
* ========= |
23 |
* |
24 |
* M (input) INTEGER |
25 |
* The number of rows of the matrix A. M >= 0. |
26 |
* |
27 |
* N (input) INTEGER |
28 |
* The number of columns of the matrix A. N >= 0. |
29 |
* |
30 |
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
31 |
* On entry, the M-by-N matrix A. |
32 |
* On exit, the elements on and above the diagonal of the array |
33 |
* contain the min(M,N)-by-N upper trapezoidal matrix R (R is |
34 |
* upper triangular if m >= n); the elements below the diagonal, |
35 |
* with the array TAU, represent the orthogonal matrix Q as a |
36 |
* product of min(m,n) elementary reflectors (see Further |
37 |
* Details). |
38 |
* |
39 |
* LDA (input) INTEGER |
40 |
* The leading dimension of the array A. LDA >= max(1,M). |
41 |
* |
42 |
* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) |
43 |
* The scalar factors of the elementary reflectors (see Further |
44 |
* Details). |
45 |
* |
46 |
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) |
47 |
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
48 |
* |
49 |
* LWORK (input) INTEGER |
50 |
* The dimension of the array WORK. LWORK >= max(1,N). |
51 |
* For optimum performance LWORK >= N*NB, where NB is |
52 |
* the optimal blocksize. |
53 |
* |
54 |
* If LWORK = -1, then a workspace query is assumed; the routine |
55 |
* only calculates the optimal size of the WORK array, returns |
56 |
* this value as the first entry of the WORK array, and no error |
57 |
* message related to LWORK is issued by XERBLA. |
58 |
* |
59 |
* INFO (output) INTEGER |
60 |
* = 0: successful exit |
61 |
* < 0: if INFO = -i, the i-th argument had an illegal value |
62 |
* |
63 |
* Further Details |
64 |
* =============== |
65 |
* |
66 |
* The matrix Q is represented as a product of elementary reflectors |
67 |
* |
68 |
* Q = H(1) H(2) . . . H(k), where k = min(m,n). |
69 |
* |
70 |
* Each H(i) has the form |
71 |
* |
72 |
* H(i) = I - tau * v * v' |
73 |
* |
74 |
* where tau is a real scalar, and v is a real vector with |
75 |
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), |
76 |
* and tau in TAU(i). |
77 |
* |
78 |
* ===================================================================== |
79 |
* |
80 |
* .. Local Scalars .. |
81 |
LOGICAL LQUERY |
82 |
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, |
83 |
$ NBMIN, NX |
84 |
* .. |
85 |
* .. External Subroutines .. |
86 |
EXTERNAL DGEQR2, DLARFB, DLARFT, XERBLA |
87 |
* .. |
88 |
* .. Intrinsic Functions .. |
89 |
INTRINSIC MAX, MIN |
90 |
* .. |
91 |
* .. External Functions .. |
92 |
INTEGER ILAENV |
93 |
EXTERNAL ILAENV |
94 |
* .. |
95 |
* .. Executable Statements .. |
96 |
* |
97 |
* Test the input arguments |
98 |
* |
99 |
INFO = 0 |
100 |
NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) |
101 |
LWKOPT = N*NB |
102 |
WORK( 1 ) = LWKOPT |
103 |
LQUERY = ( LWORK.EQ.-1 ) |
104 |
IF( M.LT.0 ) THEN |
105 |
INFO = -1 |
106 |
ELSE IF( N.LT.0 ) THEN |
107 |
INFO = -2 |
108 |
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN |
109 |
INFO = -4 |
110 |
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN |
111 |
INFO = -7 |
112 |
END IF |
113 |
IF( INFO.NE.0 ) THEN |
114 |
CALL XERBLA( 'DGEQRF', -INFO ) |
115 |
RETURN |
116 |
ELSE IF( LQUERY ) THEN |
117 |
RETURN |
118 |
END IF |
119 |
* |
120 |
* Quick return if possible |
121 |
* |
122 |
K = MIN( M, N ) |
123 |
IF( K.EQ.0 ) THEN |
124 |
WORK( 1 ) = 1 |
125 |
RETURN |
126 |
END IF |
127 |
* |
128 |
NBMIN = 2 |
129 |
NX = 0 |
130 |
IWS = N |
131 |
IF( NB.GT.1 .AND. NB.LT.K ) THEN |
132 |
* |
133 |
* Determine when to cross over from blocked to unblocked code. |
134 |
* |
135 |
NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) ) |
136 |
IF( NX.LT.K ) THEN |
137 |
* |
138 |
* Determine if workspace is large enough for blocked code. |
139 |
* |
140 |
LDWORK = N |
141 |
IWS = LDWORK*NB |
142 |
IF( LWORK.LT.IWS ) THEN |
143 |
* |
144 |
* Not enough workspace to use optimal NB: reduce NB and |
145 |
* determine the minimum value of NB. |
146 |
* |
147 |
NB = LWORK / LDWORK |
148 |
NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1, |
149 |
$ -1 ) ) |
150 |
END IF |
151 |
END IF |
152 |
END IF |
153 |
* |
154 |
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN |
155 |
* |
156 |
* Use blocked code initially |
157 |
* |
158 |
DO 10 I = 1, K - NX, NB |
159 |
IB = MIN( K-I+1, NB ) |
160 |
* |
161 |
* Compute the QR factorization of the current block |
162 |
* A(i:m,i:i+ib-1) |
163 |
* |
164 |
CALL DGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK, |
165 |
$ IINFO ) |
166 |
IF( I+IB.LE.N ) THEN |
167 |
* |
168 |
* Form the triangular factor of the block reflector |
169 |
* H = H(i) H(i+1) . . . H(i+ib-1) |
170 |
* |
171 |
CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB, |
172 |
$ A( I, I ), LDA, TAU( I ), WORK, LDWORK ) |
173 |
* |
174 |
* Apply H' to A(i:m,i+ib:n) from the left |
175 |
* |
176 |
CALL DLARFB( 'Left', 'Transpose', 'Forward', |
177 |
$ 'Columnwise', M-I+1, N-I-IB+1, IB, |
178 |
$ A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ), |
179 |
$ LDA, WORK( IB+1 ), LDWORK ) |
180 |
END IF |
181 |
10 CONTINUE |
182 |
ELSE |
183 |
I = 1 |
184 |
END IF |
185 |
* |
186 |
* Use unblocked code to factor the last or only block. |
187 |
* |
188 |
IF( I.LE.K ) |
189 |
$ CALL DGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, |
190 |
$ IINFO ) |
191 |
* |
192 |
WORK( 1 ) = IWS |
193 |
RETURN |
194 |
* |
195 |
* End of DGEQRF |
196 |
* |
197 |
END |