Statistiques
| Révision :

root / src / lapack / double / dgeqrf.f @ 1

Historique | Voir | Annoter | Télécharger (5,74 ko)

1
      SUBROUTINE DGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
2
*
3
*  -- LAPACK routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     November 2006
7
*
8
*     .. Scalar Arguments ..
9
      INTEGER            INFO, LDA, LWORK, M, N
10
*     ..
11
*     .. Array Arguments ..
12
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
13
*     ..
14
*
15
*  Purpose
16
*  =======
17
*
18
*  DGEQRF computes a QR factorization of a real M-by-N matrix A:
19
*  A = Q * R.
20
*
21
*  Arguments
22
*  =========
23
*
24
*  M       (input) INTEGER
25
*          The number of rows of the matrix A.  M >= 0.
26
*
27
*  N       (input) INTEGER
28
*          The number of columns of the matrix A.  N >= 0.
29
*
30
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
31
*          On entry, the M-by-N matrix A.
32
*          On exit, the elements on and above the diagonal of the array
33
*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
34
*          upper triangular if m >= n); the elements below the diagonal,
35
*          with the array TAU, represent the orthogonal matrix Q as a
36
*          product of min(m,n) elementary reflectors (see Further
37
*          Details).
38
*
39
*  LDA     (input) INTEGER
40
*          The leading dimension of the array A.  LDA >= max(1,M).
41
*
42
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
43
*          The scalar factors of the elementary reflectors (see Further
44
*          Details).
45
*
46
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
47
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
48
*
49
*  LWORK   (input) INTEGER
50
*          The dimension of the array WORK.  LWORK >= max(1,N).
51
*          For optimum performance LWORK >= N*NB, where NB is
52
*          the optimal blocksize.
53
*
54
*          If LWORK = -1, then a workspace query is assumed; the routine
55
*          only calculates the optimal size of the WORK array, returns
56
*          this value as the first entry of the WORK array, and no error
57
*          message related to LWORK is issued by XERBLA.
58
*
59
*  INFO    (output) INTEGER
60
*          = 0:  successful exit
61
*          < 0:  if INFO = -i, the i-th argument had an illegal value
62
*
63
*  Further Details
64
*  ===============
65
*
66
*  The matrix Q is represented as a product of elementary reflectors
67
*
68
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
69
*
70
*  Each H(i) has the form
71
*
72
*     H(i) = I - tau * v * v'
73
*
74
*  where tau is a real scalar, and v is a real vector with
75
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
76
*  and tau in TAU(i).
77
*
78
*  =====================================================================
79
*
80
*     .. Local Scalars ..
81
      LOGICAL            LQUERY
82
      INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
83
     $                   NBMIN, NX
84
*     ..
85
*     .. External Subroutines ..
86
      EXTERNAL           DGEQR2, DLARFB, DLARFT, XERBLA
87
*     ..
88
*     .. Intrinsic Functions ..
89
      INTRINSIC          MAX, MIN
90
*     ..
91
*     .. External Functions ..
92
      INTEGER            ILAENV
93
      EXTERNAL           ILAENV
94
*     ..
95
*     .. Executable Statements ..
96
*
97
*     Test the input arguments
98
*
99
      INFO = 0
100
      NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
101
      LWKOPT = N*NB
102
      WORK( 1 ) = LWKOPT
103
      LQUERY = ( LWORK.EQ.-1 )
104
      IF( M.LT.0 ) THEN
105
         INFO = -1
106
      ELSE IF( N.LT.0 ) THEN
107
         INFO = -2
108
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
109
         INFO = -4
110
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
111
         INFO = -7
112
      END IF
113
      IF( INFO.NE.0 ) THEN
114
         CALL XERBLA( 'DGEQRF', -INFO )
115
         RETURN
116
      ELSE IF( LQUERY ) THEN
117
         RETURN
118
      END IF
119
*
120
*     Quick return if possible
121
*
122
      K = MIN( M, N )
123
      IF( K.EQ.0 ) THEN
124
         WORK( 1 ) = 1
125
         RETURN
126
      END IF
127
*
128
      NBMIN = 2
129
      NX = 0
130
      IWS = N
131
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
132
*
133
*        Determine when to cross over from blocked to unblocked code.
134
*
135
         NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
136
         IF( NX.LT.K ) THEN
137
*
138
*           Determine if workspace is large enough for blocked code.
139
*
140
            LDWORK = N
141
            IWS = LDWORK*NB
142
            IF( LWORK.LT.IWS ) THEN
143
*
144
*              Not enough workspace to use optimal NB:  reduce NB and
145
*              determine the minimum value of NB.
146
*
147
               NB = LWORK / LDWORK
148
               NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
149
     $                 -1 ) )
150
            END IF
151
         END IF
152
      END IF
153
*
154
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
155
*
156
*        Use blocked code initially
157
*
158
         DO 10 I = 1, K - NX, NB
159
            IB = MIN( K-I+1, NB )
160
*
161
*           Compute the QR factorization of the current block
162
*           A(i:m,i:i+ib-1)
163
*
164
            CALL DGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
165
     $                   IINFO )
166
            IF( I+IB.LE.N ) THEN
167
*
168
*              Form the triangular factor of the block reflector
169
*              H = H(i) H(i+1) . . . H(i+ib-1)
170
*
171
               CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
172
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
173
*
174
*              Apply H' to A(i:m,i+ib:n) from the left
175
*
176
               CALL DLARFB( 'Left', 'Transpose', 'Forward',
177
     $                      'Columnwise', M-I+1, N-I-IB+1, IB,
178
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
179
     $                      LDA, WORK( IB+1 ), LDWORK )
180
            END IF
181
   10    CONTINUE
182
      ELSE
183
         I = 1
184
      END IF
185
*
186
*     Use unblocked code to factor the last or only block.
187
*
188
      IF( I.LE.K )
189
     $   CALL DGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
190
     $                IINFO )
191
*
192
      WORK( 1 ) = IWS
193
      RETURN
194
*
195
*     End of DGEQRF
196
*
197
      END