root / src / egrad_LEPS.f90
Historique | Voir | Annoter | Télécharger (5,12 ko)
1 |
SUBROUTINE egrad_LEPS(nat,e,geom,grad) |
---|---|
2 |
! This program computes the ernergy and gradien in cartesian coordinates |
3 |
! for the cartesian geometry Geom |
4 |
|
5 |
!---------------------------------------------------------------------- |
6 |
! Copyright 2003-2014 Ecole Normale Supérieure de Lyon, |
7 |
! Centre National de la Recherche Scientifique, |
8 |
! Université Claude Bernard Lyon 1. All rights reserved. |
9 |
! |
10 |
! This work is registered with the Agency for the Protection of Programs |
11 |
! as IDDN.FR.001.100009.000.S.P.2014.000.30625 |
12 |
! |
13 |
! Authors: P. Fleurat-Lessard, P. Dayal |
14 |
! Contact: optnpath@gmail.com |
15 |
! |
16 |
! This file is part of "Opt'n Path". |
17 |
! |
18 |
! "Opt'n Path" is free software: you can redistribute it and/or modify |
19 |
! it under the terms of the GNU Affero General Public License as |
20 |
! published by the Free Software Foundation, either version 3 of the License, |
21 |
! or (at your option) any later version. |
22 |
! |
23 |
! "Opt'n Path" is distributed in the hope that it will be useful, |
24 |
! but WITHOUT ANY WARRANTY; without even the implied warranty of |
25 |
! |
26 |
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
27 |
! GNU Affero General Public License for more details. |
28 |
! |
29 |
! You should have received a copy of the GNU Affero General Public License |
30 |
! along with "Opt'n Path". If not, see <http://www.gnu.org/licenses/>. |
31 |
! |
32 |
! Contact The Office of Technology Licensing, valorisation@ens-lyon.fr, |
33 |
! for commercial licensing opportunities. |
34 |
!---------------------------------------------------------------------- |
35 |
|
36 |
IMPLICIT NONE |
37 |
integer, parameter :: KINT = kind(1) |
38 |
integer, parameter :: KREAL = kind(1.0d0) |
39 |
|
40 |
! Number of atoms |
41 |
INTEGER(KINT), INTENT(IN) :: Nat |
42 |
! Input geometry |
43 |
REAL(KREAL), INTENT(IN) :: Geom(Nat,3) |
44 |
! output energy and gradient |
45 |
REAL(KREAL), INTENT(OUT) :: E,grad(Nat*3) |
46 |
|
47 |
|
48 |
! Parameters to define the surface |
49 |
INTEGER(KINT), DIMENSION(6), PARAMETER :: IECOEF = (/-1,9,-45,45,-9,1/) |
50 |
INTEGER(KINT), DIMENSION(6), PARAMETER :: ISCOEF = (/-3,-2,-1,1,2,3/) |
51 |
REAL(KREAL), PARAMETER :: hh=0.001d0 |
52 |
|
53 |
! Variables |
54 |
INTEGER(KINT) :: i,iat,jat |
55 |
REAL(KREAL), ALLOCATABLE :: Xyztmp(:,:),GradTmp(:,:) |
56 |
|
57 |
LOGICAL :: Debug |
58 |
|
59 |
REAL(KREAL), external :: ELEPS_xyz |
60 |
|
61 |
|
62 |
INTERFACE |
63 |
function valid(string) result (isValid) |
64 |
CHARACTER(*), intent(in) :: string |
65 |
logical :: isValid |
66 |
END function VALID |
67 |
|
68 |
END INTERFACE |
69 |
|
70 |
debug=valid('egrad_leps') |
71 |
|
72 |
if (debug) WRITE(*,*) '================ Entering Egrad_leps ===================' |
73 |
if (debug) THEN |
74 |
WRITE(*,*) "Cartesian Geometry" |
75 |
DO I=1,Nat |
76 |
WRITE(*,'(1X,I5,3(1X,F12.6))') I,Geom(i,1:3) |
77 |
END DO |
78 |
END IF |
79 |
|
80 |
ALLOCATE(XyZTmp(Nat,3),GradTmp(Nat,3)) |
81 |
|
82 |
e=ELEPS_xyz(nat,Geom) |
83 |
|
84 |
! We now calculate the gradients using numerical derivatives |
85 |
Grad=0.d0 |
86 |
GradTmp=0.d0 |
87 |
do iat=1,3 |
88 |
do jat=1,nat |
89 |
xyztmp=geom |
90 |
do i=1,6 |
91 |
xyztmp(jat,iat)=geom(jat,iat)+ISCoef(i)*hh |
92 |
gradTmp(jat,iat)=gradTmp(jat,iat)+IECoef(i)*ELEPS_xyz(nat,xyztmp) |
93 |
end do |
94 |
end do |
95 |
end do |
96 |
gradTmp=gradTmp/(60.*hh) |
97 |
do iat=1,nat |
98 |
grad(3*iat-2:3*iat)=gradTmp(iat,1:3) |
99 |
end do |
100 |
|
101 |
if (debug) THEN |
102 |
WRITE(*,*) "Cartesian gradient " |
103 |
DO I=1,Nat |
104 |
WRITE(*,'(1X,I5,3(1X,F12.6))') I,Gradtmp(i,1:3) |
105 |
END DO |
106 |
END IF |
107 |
|
108 |
|
109 |
deallocate(xyztmp,gradTmp) |
110 |
|
111 |
|
112 |
if (debug) WRITE(*,*) '================ Exiting Egrad_leps ===================' |
113 |
|
114 |
! ====================================================================== |
115 |
end |
116 |
|
117 |
|
118 |
|
119 |
function ELEPS_xyz(natoms,Xyz) |
120 |
|
121 |
use Path_module, only : order |
122 |
use Io_module, only : au2ev |
123 |
|
124 |
IMPLICIT NONE |
125 |
integer, parameter :: KINT = kind(1) |
126 |
integer, parameter :: KREAL = kind(1.0d0) |
127 |
|
128 |
|
129 |
INTEGER(KINT) ,INTENT(IN) :: natoms |
130 |
REAL(KREAL) ,INTENT(IN) :: Xyz(natoms,3) |
131 |
REAL(KREAL) :: ELEPS_xyz |
132 |
|
133 |
INTEGER(KINT) :: i |
134 |
REAL(KREAL) :: rAB, rBC, rAC |
135 |
|
136 |
REAL(KREAL), PARAMETER :: a=0.05, b=0.30, c=0.05 |
137 |
REAL(KREAL), PARAMETER :: dAB=4.746, dBC=4.747, dAC=3.445 |
138 |
REAL(KREAL), PARAMETER :: r0=0.742, alpha=1.942 |
139 |
|
140 |
REAL(KREAL) :: Qbc,QAc,Qab,Jab,Jbc,Jac |
141 |
|
142 |
rAB=0. |
143 |
rAC=0. |
144 |
rBC=0. |
145 |
do i=1,3 |
146 |
rBC=rBC+(xyz(Order(3),i)-xyz(order(2),i))**2 |
147 |
rAB=rAB+(xyz(order(1),i)-xyz(order(2),i))**2 |
148 |
rAC=rAC+(xyz(order(1),i)-xyz(order(3),i))**2 |
149 |
end do |
150 |
rAB=sqrt(rAB) |
151 |
rBC=sqrt(rBC) |
152 |
rAC=sqrt(rAC) |
153 |
|
154 |
! For consistency with previous articles : rAC is constrained to be 3.742 |
155 |
rAC=3.742 |
156 |
|
157 |
Qab = dab*(1.5*exp(-2*alpha*(rAB-r0))-exp(-alpha*(rAB-r0)))/(2+2*a) |
158 |
Qbc = dbc*(1.5*exp(-2*alpha*(rBC-r0))-exp(-alpha*(rBC-r0)))/(2+2*b) |
159 |
Qac = dac*(1.5*exp (-2*alpha*(rAC-r0))-exp(-alpha*(rAC-r0)))/(2+2*c) |
160 |
Jab = dab*(exp(-2*alpha*(rAB-r0))-6*exp(-alpha*(rAB-r0)))/(4+4*a) |
161 |
Jbc = dbc*(exp(-2*alpha*(rBC-r0))-6*exp(-alpha*(rBC-r0)))/(4+4*b) |
162 |
Jac = dac*(exp(-2*alpha*(rAC-r0))-6*exp(-alpha*(rAC-r0)))/(4+4*c) |
163 |
|
164 |
! V(x,y) = Qab(x)+Qbc(y)+Qac(rac)-sqrt(Jab(x)**2+Jbc(y)**2+Jac(x)**2-Jab(x)*Jbc(y)-Jbc(y)*Jac(rac)-Jab(x)*Jac(rac)) |
165 |
|
166 |
|
167 |
ELEPS_xyz=(Qab+Qbc+Qac-sqrt(Jab**2+Jbc**2+Jac**2-Jab*Jbc-Jbc*Jac-Jab*Jac))/au2eV |
168 |
|
169 |
return |
170 |
end function ELEPS_xyz |