root / src / Step_GEDIIS_All.f90
Historique | Voir | Annoter | Télécharger (23,08 ko)
1 |
! Geom = input parameter vector (Geometry), Grad = input gradient vector, HEAT is Energy(Geom) |
---|---|
2 |
SUBROUTINE Step_GEDIIS_All(NGeomF,IGeom,Step,Geom,Grad,HEAT,Hess,NCoord,allocation_flag,Tangent) |
3 |
|
4 |
!---------------------------------------------------------------------- |
5 |
! This routine was adapted from the public domain mopac6 diis.f |
6 |
! source file (c) 2009, Stewart Computational Chemistry. |
7 |
! <http://www.openmopac.net/Downloads/Downloads.html> |
8 |
! |
9 |
!---------------------------------------------------------------------- |
10 |
! Copyright 2003-2014 Ecole Normale Supérieure de Lyon, |
11 |
! Centre National de la Recherche Scientifique, |
12 |
! Université Claude Bernard Lyon 1. All rights reserved. |
13 |
! |
14 |
! This work is registered with the Agency for the Protection of Programs |
15 |
! as IDDN.FR.001.100009.000.S.P.2014.000.30625 |
16 |
! |
17 |
! Authors: P. Fleurat-Lessard, P. Dayal |
18 |
! Contact: optnpath@gmail.com |
19 |
! |
20 |
! This file is part of "Opt'n Path". |
21 |
! |
22 |
! "Opt'n Path" is free software: you can redistribute it and/or modify |
23 |
! it under the terms of the GNU Affero General Public License as |
24 |
! published by the Free Software Foundation, either version 3 of the License, |
25 |
! or (at your option) any later version. |
26 |
! |
27 |
! "Opt'n Path" is distributed in the hope that it will be useful, |
28 |
! but WITHOUT ANY WARRANTY; without even the implied warranty of |
29 |
! |
30 |
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
31 |
! GNU Affero General Public License for more details. |
32 |
! |
33 |
! You should have received a copy of the GNU Affero General Public License |
34 |
! along with "Opt'n Path". If not, see <http://www.gnu.org/licenses/>. |
35 |
! |
36 |
! Contact The Office of Technology Licensing, valorisation@ens-lyon.fr, |
37 |
! for commercial licensing opportunities. |
38 |
!---------------------------------------------------------------------- |
39 |
|
40 |
use Io_module |
41 |
use Path_module, only : Vfree |
42 |
IMPLICIT NONE |
43 |
|
44 |
INTEGER(KINT) :: NGeomF,IGeom |
45 |
INTEGER(KINT), INTENT(IN) :: NCoord |
46 |
REAL(KREAL) :: Geom(NCoord), Grad(NCoord), Hess(NCoord*NCoord), Step(NCoord) |
47 |
REAL(KREAL) :: HEAT ! HEAT= Energy |
48 |
LOGICAL :: allocation_flag |
49 |
REAL(KREAL), INTENT(INOUT) :: Tangent(Ncoord) |
50 |
|
51 |
! MRESET = maximum number of iterations. |
52 |
INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
53 |
REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:,:), GradSet(:,:) ! NGeomF,MRESET*NCoord |
54 |
REAL(KREAL), ALLOCATABLE, SAVE :: GSAVE(:,:) !NGeomF,NCoord |
55 |
REAL(KREAL), ALLOCATABLE, SAVE :: ESET(:,:) |
56 |
REAL(KREAL) :: ESET_tmp(MRESET), B(M2), BS(M2), BST(M2), B_tmp(M2) ! M2=256 |
57 |
LOGICAL :: DEBUG, PRINT, ci_lt_zero |
58 |
INTEGER(KINT), ALLOCATABLE, SAVE :: MSET(:) ! mth Iteration |
59 |
LOGICAL, ALLOCATABLE, SAVE :: FRST(:) |
60 |
REAL(KREAL) :: ci(MRESET), ci_tmp(MRESET) ! MRESET = maximum number of iterations. |
61 |
INTEGER(KINT) :: NGEDIIS, MPLUS, INV, ITERA, MM, cis_zero |
62 |
INTEGER(KINT) :: I, J, K, JJ, JNV, II, IONE, IJ, IX, JX, KX |
63 |
INTEGER(KINT) :: current_size_B_mat, MyPointer, Isch, NFree, Idx |
64 |
REAL(KREAL) :: XMax, XNorm, DET, THRES, tmp, ER_star, ER_star_tmp, Norm |
65 |
REAL(KREAL), PARAMETER :: eps=1e-12 |
66 |
REAL(KREAL), PARAMETER :: crit=1e-8 |
67 |
REAL(KREAL), ALLOCATABLE :: Tanf(:) ! NCoord |
68 |
REAL(KREAL), ALLOCATABLE :: HFree(:) ! NFree*NFree |
69 |
REAL(KREAL), ALLOCATABLE :: Htmp(:,:) ! NCoord,NFree |
70 |
REAL(KREAL), ALLOCATABLE :: Grad_free(:), Step_free(:) ! NFree |
71 |
REAL(KREAL), ALLOCATABLE :: Geom_free(:), Geom_new_free(:) ! NFree |
72 |
REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet_free(:,:), GradSet_free(:,:) |
73 |
|
74 |
DEBUG=.TRUE. |
75 |
PRINT=.FALSE. |
76 |
|
77 |
IF (PRINT) WRITE(*,'(/,'' BEGIN Step_GEDIIS_ALL '')') |
78 |
|
79 |
! Initialization |
80 |
IF (allocation_flag) THEN |
81 |
! allocation_flag will be set to False in SPACE_GEDIIS, so no need to modify it here |
82 |
IF (ALLOCATED(GeomSet)) THEN |
83 |
IF (PRINT) WRITE(*,'(/,'' In allocation_flag, GEDIIS_ALL Dealloc '')') |
84 |
DEALLOCATE(GeomSet,GradSet,GSave,GeomSet_free,GradSet_free) |
85 |
RETURN |
86 |
ELSE |
87 |
IF (PRINT) WRITE(*,'(/,'' In allocation_flag, GEDIIS_ALL Alloc '')') |
88 |
ALLOCATE(GeomSet(NGeomF,MRESET*NCoord),GradSet(NGeomF,MRESET*NCoord),GSAVE(NGeomF,NCoord)) |
89 |
ALLOCATE(GeomSet_free(NGeomF,MRESET*NCoord),GradSet_free(NGeomF,MRESET*NCoord)) |
90 |
ALLOCATE(MSET(NGeomF),FRST(NGeomF),ESET(NGeomF,MRESET)) |
91 |
DO I=1,NGeomF |
92 |
FRST(I) = .TRUE. |
93 |
GeomSet(I,:) = 0.d0 |
94 |
GradSet(I,:) = 0.d0 |
95 |
GSAVE(I,:)=0.d0 |
96 |
GeomSet_free(I,:) = 0.d0 |
97 |
GradSet_free(I,:) = 0.d0 |
98 |
END DO |
99 |
MSET(:)=0 |
100 |
END IF |
101 |
allocation_flag = .FALSE. |
102 |
END IF ! IF (allocation_flag) THEN |
103 |
|
104 |
! ADDED FROM HERE: |
105 |
Call FreeMv(NCoord,Vfree) ! VFree(Ncoord,Ncoord), as of now, an Identity matrix. |
106 |
! we orthogonalize Vfree to the tangent vector of this geom only if Tangent/=0.d0 |
107 |
Norm=sqrt(dot_product(Tangent,Tangent)) |
108 |
IF (Norm.GT.eps) THEN |
109 |
ALLOCATE(Tanf(NCoord)) |
110 |
|
111 |
! We normalize Tangent |
112 |
Tangent=Tangent/Norm |
113 |
|
114 |
! We convert Tangent into Vfree only displacements. This is useless for now (2007.Apr.23) |
115 |
! as Vfree=Id matrix but it will be usefull as soon as we introduce constraints. |
116 |
DO I=1,NCoord |
117 |
Tanf(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Tangent) |
118 |
END DO |
119 |
Tangent=0.d0 |
120 |
DO I=1,NCoord |
121 |
Tangent=Tangent+Tanf(I)*Vfree(:,I) |
122 |
END DO |
123 |
! first we subtract Tangent from vfree |
124 |
DO I=1,NCoord |
125 |
Norm=dot_product(reshape(vfree(:,I),(/NCoord/)),Tangent) |
126 |
Vfree(:,I)=Vfree(:,I)-Norm*Tangent |
127 |
END DO |
128 |
|
129 |
Idx=0 |
130 |
! Schmidt orthogonalization of the Vfree vectors |
131 |
DO I=1,NCoord |
132 |
! We subtract the first vectors, we do it twice as the Schmidt procedure is not numerically stable. |
133 |
DO Isch=1,2 |
134 |
DO J=1,Idx |
135 |
Norm=dot_product(reshape(Vfree(:,I),(/NCoord/)),reshape(Vfree(:,J),(/NCoord/))) |
136 |
Vfree(:,I)=Vfree(:,I)-Norm*Vfree(:,J) |
137 |
END DO |
138 |
END DO |
139 |
Norm=dot_product(reshape(Vfree(:,I),(/NCoord/)),reshape(Vfree(:,I),(/NCoord/))) |
140 |
IF (Norm.GE.crit) THEN |
141 |
Idx=Idx+1 |
142 |
Vfree(:,Idx)=Vfree(:,I)/sqrt(Norm) |
143 |
END IF |
144 |
END DO |
145 |
|
146 |
IF (Idx/= NCoord-1) THEN |
147 |
WRITE(*,*) "Pb in orthogonalizing Vfree to tangent for geom",IGeom |
148 |
WRITE(IOOut,*) "Pb in orthogonalizing Vfree to tangent for geom",IGeom |
149 |
STOP |
150 |
END IF |
151 |
|
152 |
DEALLOCATE(Tanf) |
153 |
NFree=Idx |
154 |
ELSE ! Tangent =0, matches IF (Norm.GT.eps) THEN |
155 |
if (debug) WRITE(*,*) "Tangent=0, using full displacement" |
156 |
NFree=NCoord |
157 |
END IF !IF (Norm.GT.eps) THEN |
158 |
|
159 |
if (debug) WRITE(*,*) 'DBG Step_GEDIIS_All, IGeom, NFree=', IGeom, NFree |
160 |
|
161 |
! We now calculate the new step |
162 |
! we project the hessian onto the free vectors |
163 |
ALLOCATE(HFree(NFree*NFree),Htmp(NCoord,NFree),Grad_free(NFree)) |
164 |
ALLOCATE(Geom_free(NFree),Step_free(NFree),Geom_new_free(NFree)) |
165 |
DO J=1,NFree |
166 |
DO I=1,NCoord |
167 |
Htmp(I,J)=0.d0 |
168 |
DO K=1,NCoord |
169 |
Htmp(I,J)=Htmp(I,J)+Hess(((I-1)*NCoord)+K)*Vfree(K,J) |
170 |
END DO |
171 |
END DO |
172 |
END DO |
173 |
DO J=1,NFree |
174 |
DO I=1,NFree |
175 |
HFree(I+((J-1)*NFree))=0.d0 |
176 |
DO K=1,NCoord |
177 |
HFree(I+((J-1)*NFree))=HFree(I+((J-1)*NFree))+Vfree(K,I)*Htmp(K,J) |
178 |
END DO |
179 |
END DO |
180 |
END DO |
181 |
|
182 |
DO I=1,NFree |
183 |
Grad_free(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Grad) |
184 |
Geom_free(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Geom) |
185 |
END DO |
186 |
!ADDED ENDS HERE.*********************************************** |
187 |
|
188 |
! SPACE_GEDIIS SIMPLY LOADS THE CURRENT VALUES OF Geom AND Grad INTO THE ARRAYS GeomSet |
189 |
! AND GradSet, MSET is set to zero and then 1 in SPACE_GEDIIS_All at first iteration. |
190 |
CALL SPACE_GEDIIS_All(NGeomF,IGeom,MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST) |
191 |
|
192 |
IF (PRINT) WRITE(*,'(/,'' GEDIIS after SPACE_GEDIIS_ALL '')') |
193 |
|
194 |
DO J=1,MSet(IGeom) |
195 |
DO K=1,NFree |
196 |
GradSet_free(IGeom,((J-1)*NFree)+K)=dot_product(reshape(Vfree(:,K),(/NCoord/)),& |
197 |
GradSet(IGeom,((J-1)*NCoord)+1:((J-1)*NCoord)+NCoord)) |
198 |
GeomSet_free(IGeom,((J-1)*NFree)+K)=dot_product(reshape(Vfree(:,K),(/NCoord/)),& |
199 |
GeomSet(IGeom,((J-1)*NCoord)+1:((J-1)*NCoord)+NCoord)) |
200 |
END DO |
201 |
END DO |
202 |
|
203 |
! INITIALIZE SOME VARIABLES AND CONSTANTS: |
204 |
NGEDIIS = MSET(IGeom) !MSET=mth iteration |
205 |
MPLUS = MSET(IGeom) + 1 |
206 |
MM = MPLUS * MPLUS |
207 |
|
208 |
! CONSTRUCT THE GEDIIS MATRIX: |
209 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)> |
210 |
JJ=0 |
211 |
INV=-NFree |
212 |
DO I=1,MSET(IGeom) |
213 |
INV=INV+NFree |
214 |
JNV=-NFree |
215 |
DO J=1,MSET(IGeom) |
216 |
JNV=JNV+NFree |
217 |
JJ = JJ + 1 |
218 |
B(JJ)=0.D0 |
219 |
DO K=1, NFree |
220 |
B(JJ) = B(JJ) + (((GradSet_free(IGeom,INV+K)-GradSet_free(IGeom,JNV+K))* & |
221 |
(GeomSet_free(IGeom,INV+K)-GeomSet_free(IGeom,JNV+K)))/2.D0) |
222 |
END DO |
223 |
END DO |
224 |
END DO |
225 |
|
226 |
! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
227 |
! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
228 |
DO I=MSET(IGeom)-1,1,-1 |
229 |
DO J=MSET(IGeom),1,-1 |
230 |
B(I*MSET(IGeom)+J+I) = B(I*MSET(IGeom)+J) |
231 |
END DO |
232 |
END DO |
233 |
|
234 |
! For the last row and last column of GEDIIS matrix: |
235 |
DO I=1,MPLUS |
236 |
B(MPLUS*I) = 1.D0 |
237 |
B(MPLUS*MSET(IGeom)+I) = 1.D0 |
238 |
END DO |
239 |
B(MM) = 0.D0 |
240 |
|
241 |
DO I=1, MPLUS |
242 |
!WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
243 |
END DO |
244 |
|
245 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
246 |
80 CONTINUE |
247 |
DO I=1,MM !MM = (MSET(IGeom)+1) * (MSET(IGeom)+1) |
248 |
BS(I) = B(I) !just a copy of the original B (GEDIIS) matrix |
249 |
END DO |
250 |
|
251 |
IF (NGEDIIS .NE. MSET(IGeom)) THEN |
252 |
DO II=1,MSET(IGeom)-NGEDIIS |
253 |
XMAX = -1.D10 |
254 |
ITERA = 0 |
255 |
DO I=1,MSET(IGeom) |
256 |
XNORM = 0.D0 |
257 |
INV = (I-1) * MPLUS |
258 |
DO J=1,MSET(IGeom) |
259 |
XNORM = XNORM + ABS(B(INV + J)) |
260 |
END DO |
261 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
262 |
XMAX = XNORM |
263 |
ITERA = I |
264 |
IONE = INV + I |
265 |
ENDIF |
266 |
END DO |
267 |
|
268 |
DO I=1,MPLUS |
269 |
INV = (I-1) * MPLUS |
270 |
DO J=1,MPLUS |
271 |
JNV = (J-1) * MPLUS |
272 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
273 |
B(JNV + I) = B(INV + J) |
274 |
END DO |
275 |
END DO |
276 |
B(IONE) = 1.0D0 |
277 |
END DO |
278 |
END IF ! matches IF (NGEDIIS .NE. MSET(IGeom)) THEN |
279 |
|
280 |
! SCALE GEDIIS MATRIX BEFORE INVERSION: |
281 |
DO I=1,MPLUS |
282 |
II = MPLUS * (I-1) + I ! B(II)=diagonal elements of B matrix |
283 |
GSAVE(IGeom,I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
284 |
!Print *, 'GSAVE(',IGeom,',',I,')=', GSAVE(IGeom,I) |
285 |
END DO |
286 |
GSAVE(IGeom,MPLUS) = 1.D0 |
287 |
DO I=1,MPLUS |
288 |
DO J=1,MPLUS |
289 |
IJ = MPLUS * (I-1) + J |
290 |
B(IJ) = B(IJ) * GSAVE(IGeom,I) * GSAVE(IGeom,J) |
291 |
END DO |
292 |
END DO |
293 |
|
294 |
! INVERT THE GEDIIS MATRIX B: |
295 |
DO I=1, MPLUS |
296 |
!WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
297 |
END DO |
298 |
|
299 |
CALL MINV(B,MPLUS,DET) ! matrix inversion. |
300 |
|
301 |
DO I=1, MPLUS |
302 |
!WRITE(*,'(10(1X,F20.16))') B((I-1)*MPLUS+1:I*(MPLUS)) |
303 |
END DO |
304 |
|
305 |
DO I=1,MPLUS |
306 |
DO J=1,MPLUS |
307 |
IJ = MPLUS * (I-1) + J |
308 |
B(IJ) = B(IJ) * GSAVE(IGeom,I) * GSAVE(IGeom,J) |
309 |
END DO |
310 |
END DO |
311 |
|
312 |
! COMPUTE THE NEW INTERPOLATED PARAMETER VECTOR (Geometry): |
313 |
ci=0.d0 |
314 |
ci_tmp=0.d0 |
315 |
|
316 |
ci_lt_zero= .FALSE. |
317 |
DO I=1, MSET(IGeom) |
318 |
DO J=1, MSET(IGeom) ! B matrix is read column-wise |
319 |
ci(I)=ci(I)+B((J-1)*(MPLUS)+I)*ESET(IGeom,J) !ESET is energy set. |
320 |
END DO |
321 |
ci(I)=ci(I)+B((MPLUS-1)*(MPLUS)+I) |
322 |
!Print *, 'NO ci < 0 yet, c(',I,')=', ci(I) |
323 |
IF((ci(I) .LT. 0.0D0) .OR. (ci(I) .GT. 1.0D0)) THEN |
324 |
ci_lt_zero=.TRUE. |
325 |
EXIT |
326 |
END IF |
327 |
END DO !matches DO I=1, MSET(IGeom) |
328 |
|
329 |
IF (ci_lt_zero) Then |
330 |
cis_zero = 0 |
331 |
ER_star = 0.D0 |
332 |
ER_star_tmp = 1e32 |
333 |
|
334 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
335 |
JJ=0 |
336 |
INV=-NFree |
337 |
DO IX=1,MSET(IGeom) |
338 |
INV=INV+NFree |
339 |
JNV=-NFree |
340 |
DO JX=1,MSET(IGeom) |
341 |
JNV=JNV+NFree |
342 |
JJ = JJ + 1 |
343 |
BST(JJ)=0.D0 |
344 |
DO KX=1, NFree |
345 |
BST(JJ) = BST(JJ) + (((GradSet_free(IGeom,INV+KX)-GradSet_free(IGeom,JNV+KX))* & |
346 |
(GeomSet_free(IGeom,INV+KX)-GeomSet_free(IGeom,JNV+KX)))/2.D0) |
347 |
END DO |
348 |
END DO |
349 |
END DO |
350 |
|
351 |
DO I=1, (2**MSET(IGeom))-2 ! all (2**MSET(IGeom))-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
352 |
!Print *, 'Entering into DO I=1, (2**MSET(IGeom))-2 loop, MSET(IGeom)=', MSET(IGeom), ', I=', I |
353 |
ci(:)=1.D0 |
354 |
! find out which cis are zero in I: |
355 |
DO IX=1, MSET(IGeom) |
356 |
JJ=IAND(I, 2**(IX-1)) |
357 |
IF(JJ .EQ. 0) Then |
358 |
ci(IX)=0.D0 |
359 |
END IF |
360 |
END DO |
361 |
|
362 |
ci_lt_zero = .FALSE. |
363 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
364 |
DO IX=1, MSET(IGeom)*MSET(IGeom) |
365 |
B(IX) = BST(IX) !just a copy of the original B (GEDIIS) matrix |
366 |
END DO |
367 |
|
368 |
! Removal of KXth row and KXth column in order to accomodate cI to be zero: |
369 |
current_size_B_mat=MSET(IGeom) |
370 |
cis_zero = 0 |
371 |
! The bits of I (index of the upper loop 'DO I=1, (2**MSET(IGeom))-2'), gives which cis are zero. |
372 |
DO KX=1, MSET(IGeom) ! searching for each bit of I (index of the upper loop 'DO I=1, (2**MSET(IGeom))-2') |
373 |
IF (ci(KX) .EQ. 0.D0) Then !remove KXth row and KXth column |
374 |
cis_zero = cis_zero + 1 |
375 |
|
376 |
! First row removal: (B matrix is read column-wise) |
377 |
JJ=0 |
378 |
DO IX=1,current_size_B_mat ! columns reading |
379 |
DO JX=1,current_size_B_mat ! rows reading |
380 |
IF (JX .NE. KX) Then |
381 |
JJ = JJ + 1 |
382 |
B_tmp(JJ) = B((IX-1)*current_size_B_mat+JX) |
383 |
END IF |
384 |
END DO |
385 |
END DO |
386 |
|
387 |
DO IX=1,current_size_B_mat*(current_size_B_mat-1) |
388 |
B(IX) = B_tmp(IX) |
389 |
END DO |
390 |
|
391 |
! Now column removal: |
392 |
JJ=0 |
393 |
DO IX=1,KX-1 ! columns reading |
394 |
DO JX=1,current_size_B_mat-1 ! rows reading |
395 |
JJ = JJ + 1 |
396 |
B_tmp(JJ) = B(JJ) |
397 |
END DO |
398 |
END DO |
399 |
|
400 |
DO IX=KX+1,current_size_B_mat |
401 |
DO JX=1,current_size_B_mat-1 |
402 |
JJ = JJ + 1 |
403 |
B_tmp(JJ) = B(JJ+current_size_B_mat-1) |
404 |
END DO |
405 |
END DO |
406 |
|
407 |
DO IX=1,(current_size_B_mat-1)*(current_size_B_mat-1) |
408 |
B(IX) = B_tmp(IX) |
409 |
END DO |
410 |
current_size_B_mat = current_size_B_mat - 1 |
411 |
END IF ! matches IF (ci(KX) .EQ. 0.D0) Then !remove |
412 |
END DO ! matches DO KX=1, MSET(IGeom) |
413 |
|
414 |
! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
415 |
! The correction is needed because the last coloumn and row of the matrix contains all 1 and one zero. |
416 |
DO IX=MSET(IGeom)-cis_zero-1,1,-1 |
417 |
DO JX=MSET(IGeom)-cis_zero,1,-1 |
418 |
B(IX*(MSET(IGeom)-cis_zero)+JX+IX) = B(IX*(MSET(IGeom)-cis_zero)+JX) |
419 |
END DO |
420 |
END DO |
421 |
|
422 |
! for last row and last column of GEDIIS matrix |
423 |
DO IX=1,MPLUS-cis_zero |
424 |
B((MPLUS-cis_zero)*IX) = 1.D0 |
425 |
B((MPLUS-cis_zero)*(MSET(IGeom)-cis_zero)+IX) = 1.D0 |
426 |
END DO |
427 |
B((MPLUS-cis_zero) * (MPLUS-cis_zero)) = 0.D0 |
428 |
|
429 |
DO IX=1, MPLUS |
430 |
!WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
431 |
END DO |
432 |
|
433 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
434 |
IF (NGEDIIS .NE. MSET(IGeom)) THEN |
435 |
JX = min(MSET(IGeom)-NGEDIIS,MSET(IGeom)-cis_zero-1) |
436 |
DO II=1,JX |
437 |
XMAX = -1.D10 |
438 |
ITERA = 0 |
439 |
DO IX=1,MSET(IGeom)-cis_zero |
440 |
XNORM = 0.D0 |
441 |
INV = (IX-1) * (MPLUS-cis_zero) |
442 |
DO J=1,MSET(IGeom)-cis_zero |
443 |
XNORM = XNORM + ABS(B(INV + J)) |
444 |
END DO |
445 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
446 |
XMAX = XNORM |
447 |
ITERA = IX |
448 |
IONE = INV + IX |
449 |
ENDIF |
450 |
END DO |
451 |
|
452 |
DO IX=1,MPLUS-cis_zero |
453 |
INV = (IX-1) * (MPLUS-cis_zero) |
454 |
DO J=1,MPLUS-cis_zero |
455 |
JNV = (J-1) * (MPLUS-cis_zero) |
456 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
457 |
B(JNV + IX) = B(INV + J) |
458 |
END DO |
459 |
END DO |
460 |
B(IONE) = 1.0D0 |
461 |
END DO |
462 |
END IF ! matches IF (NGEDIIS .NE. MSET(IGeom)) THEN |
463 |
|
464 |
! SCALE GEDIIS MATRIX BEFORE INVERSION: |
465 |
DO IX=1,MPLUS-cis_zero |
466 |
II = (MPLUS-cis_zero) * (IX-1) + IX ! B(II)=diagonal elements of B matrix |
467 |
GSAVE(IGeom,IX) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
468 |
END DO |
469 |
GSAVE(IGeom,MPLUS-cis_zero) = 1.D0 |
470 |
DO IX=1,MPLUS-cis_zero |
471 |
DO JX=1,MPLUS-cis_zero |
472 |
IJ = (MPLUS-cis_zero) * (IX-1) + JX |
473 |
B(IJ) = B(IJ) * GSAVE(IGeom,IX) * GSAVE(IGeom,JX) |
474 |
END DO |
475 |
END DO |
476 |
|
477 |
! INVERT THE GEDIIS MATRIX B: |
478 |
CALL MINV(B,MPLUS-cis_zero,DET) ! matrix inversion. |
479 |
|
480 |
DO IX=1,MPLUS-cis_zero |
481 |
DO JX=1,MPLUS-cis_zero |
482 |
IJ = (MPLUS-cis_zero) * (IX-1) + JX |
483 |
B(IJ) = B(IJ) * GSAVE(IGeom,IX) * GSAVE(IGeom,JX) |
484 |
END DO |
485 |
END DO |
486 |
|
487 |
DO IX=1, MPLUS |
488 |
!WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
489 |
END DO |
490 |
|
491 |
! ESET is rearranged to handle zero cis and stored in ESET_tmp: |
492 |
JJ=0 |
493 |
DO IX=1, MSET(IGeom) |
494 |
IF (ci(IX) .NE. 0) Then |
495 |
JJ=JJ+1 |
496 |
ESET_tmp(JJ) = ESET(IGeom,IX) |
497 |
END IF |
498 |
END DO |
499 |
|
500 |
! DETERMINATION OF nonzero cis: |
501 |
MyPointer=1 |
502 |
DO IX=1, MSET(IGeom)-cis_zero |
503 |
tmp = 0.D0 |
504 |
DO J=1, MSET(IGeom)-cis_zero ! B matrix is read column-wise |
505 |
tmp=tmp+B((J-1)*(MPLUS-cis_zero)+IX)*ESET_tmp(J) |
506 |
END DO |
507 |
tmp=tmp+B((MPLUS-cis_zero-1)*(MPLUS-cis_zero)+IX) |
508 |
IF((tmp .LT. 0.0D0) .OR. (tmp .GT. 1.0D0)) THEN |
509 |
ci_lt_zero=.TRUE. |
510 |
EXIT |
511 |
ELSE |
512 |
DO JX=MyPointer,MSET(IGeom) |
513 |
IF (ci(JX) .NE. 0) Then |
514 |
ci(JX) = tmp |
515 |
MyPointer=JX+1 |
516 |
EXIT |
517 |
END IF |
518 |
END DO |
519 |
END IF |
520 |
END DO !matches DO I=1, MSET(IGeom)-cis_zero |
521 |
!Print *, 'Local set of cis, first 10:, MSET(IGeom)=', MSET(IGeom), ', I of (2**MSET(IGeom))-2=', I |
522 |
!WRITE(*,'(10(1X,F20.4))') ci(1:MSET(IGeom)) |
523 |
!Print *, 'Local set of cis ends:****************************************' |
524 |
|
525 |
! new set of cis determined based on the lower energy (ER_star): |
526 |
IF (.NOT. ci_lt_zero) Then |
527 |
Call Energy_GEDIIS(MRESET,MSET(IGeom),ci,GeomSet_free(IGeom,:),GradSet_free(IGeom,:),ESET(IGeom,:),NFree,ER_star) |
528 |
IF (ER_star .LT. ER_star_tmp) Then |
529 |
ci_tmp=ci |
530 |
ER_star_tmp = ER_star |
531 |
END IF |
532 |
END IF ! matches IF (.NOT. ci_lt_zero) Then |
533 |
END DO !matches DO I=1, (2**K)-2 ! all (2**K)-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
534 |
ci = ci_tmp |
535 |
END IF! matches IF (ci_lt_zero) Then |
536 |
|
537 |
Print *, 'Final set of cis, first 10:***********************************' |
538 |
WRITE(*,'(10(1X,F20.4))') ci(1:MSET(IGeom)) |
539 |
Print *, 'Final set of cis ends:****************************************' |
540 |
Geom_new_free(:) = 0.D0 |
541 |
DO I=1, MSET(IGeom) |
542 |
Geom_new_free(:) = Geom_new_free(:) + (ci(I)*GeomSet_free(IGeom,(I-1)*NFree+1:I*NFree)) !MPLUS=MSET(IGeom)+1 |
543 |
! R_(N+1)=R*+DeltaR: |
544 |
DO J=1, NFree |
545 |
tmp=0.D0 |
546 |
DO K=1,NFree |
547 |
! this can be commented: |
548 |
!tmp=tmp+HFree((J-1)*NFree+K)*GradSet_free(IGeom,(I-1)*NFree+K) ! If Hinv=.False., then we need to invert Hess |
549 |
END DO |
550 |
Geom_new_free(J) = Geom_new_free(J) - (ci(I)*tmp) |
551 |
END DO |
552 |
END DO |
553 |
|
554 |
Step_free(:) = Geom_new_free(:) - Geom_free(:) |
555 |
|
556 |
XNORM = SQRT(DOT_PRODUCT(Step_free,Step_free)) |
557 |
IF (PRINT) THEN |
558 |
WRITE (6,'(/10X,''DEVIATION IN X '',F10.4,8X,''DETERMINANT '',G9.3)') XNORM, DET |
559 |
!WRITE(*,'(10X,''GEDIIS COEFFICIENTS'')') |
560 |
!WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET(IGeom)+I),I=1,MSET(IGeom)) |
561 |
ENDIF |
562 |
|
563 |
! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
564 |
THRES = MAX(10.D0**(-NFree), 1.D-25) |
565 |
IF (XNORM.GT.2.D0 .OR. DABS(DET) .LT. THRES) THEN |
566 |
IF (PRINT)THEN |
567 |
WRITE(*,*) "THE GEDIIS MATRIX IS ILL CONDITIONED" |
568 |
WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
569 |
WRITE(*,*) "THE GEDIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
570 |
END IF |
571 |
DO K=1,MM |
572 |
B(K) = BS(K) ! why this is reverted? Because "IF (NGEDIIS .GT. 0) GO TO 80", see below |
573 |
END DO |
574 |
NGEDIIS = NGEDIIS - 1 |
575 |
IF (NGEDIIS .GT. 0) GO TO 80 |
576 |
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
577 |
Geom_new_free(:) = Geom_free(:) ! Geom_new is set to original Geom, thus Step = Geom(:) - Geom_new(:)=zero, the whole |
578 |
! new update to Geom_new is discarded, since XNORM.GT.2.D0 .OR. DABS(DET) .LT. THRES |
579 |
END IF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
580 |
|
581 |
!****************************************************************************************************************** |
582 |
Geom_new_free(:) = 0.D0 |
583 |
DO I=1, MSET(IGeom) |
584 |
Geom_new_free(:) = Geom_new_free(:) + (ci(I)*GeomSet_free(IGeom,(I-1)*NFree+1:I*NFree)) !MPLUS=MSET(IGeom)+1 |
585 |
! R_(N+1)=R*+DeltaR: |
586 |
DO J=1, NFree |
587 |
tmp=0.D0 |
588 |
DO K=1,NFree |
589 |
tmp=tmp+HFree((J-1)*NFree+K)*GradSet_free(IGeom,(I-1)*NFree+K) ! If Hinv=.False., then we need to invert Hess |
590 |
END DO |
591 |
Geom_new_free(J) = Geom_new_free(J) - (ci(I)*tmp) |
592 |
END DO |
593 |
END DO |
594 |
|
595 |
Step_free(:) = Geom_new_free(:) - Geom_free(:) |
596 |
!****************************************************************************************************************** |
597 |
Step = 0.d0 |
598 |
DO I=1,NFree |
599 |
Step = Step + Step_free(I)*Vfree(:,I) |
600 |
END DO |
601 |
|
602 |
DEALLOCATE(Hfree,Htmp,Grad_free,Step_free,Geom_free,Geom_new_free) |
603 |
|
604 |
IF (PRINT) WRITE(*,'(/,'' END Step_GEDIIS_ALL '',/)') |
605 |
|
606 |
END SUBROUTINE Step_GEDIIS_All |
607 |
|