root / src / Step_GEDIIS.f90
Historique | Voir | Annoter | Télécharger (17,08 ko)
1 |
! Geom = input parameter vector (Geometry), Grad = input gradient vector. |
---|---|
2 |
! HEAT is Energy(Geom) |
3 |
SUBROUTINE Step_GEDIIS(Geom_new,Geom,Grad,HEAT,Hess,NCoord,FRST) |
4 |
! This routine was adapted from the public domain mopac6 diis.f |
5 |
! source file (c) 2009, Stewart Computational Chemistry. |
6 |
! <http://www.openmopac.net/Downloads/Downloads.html> |
7 |
! |
8 |
!---------------------------------------------------------------------- |
9 |
! Copyright 2003-2014 Ecole Normale Supérieure de Lyon, |
10 |
! Centre National de la Recherche Scientifique, |
11 |
! Université Claude Bernard Lyon 1. All rights reserved. |
12 |
! |
13 |
! This work is registered with the Agency for the Protection of Programs |
14 |
! as IDDN.FR.001.100009.000.S.P.2014.000.30625 |
15 |
! |
16 |
! Authors: P. Fleurat-Lessard, P. Dayal |
17 |
! Contact: optnpath@gmail.com |
18 |
! |
19 |
! This file is part of "Opt'n Path". |
20 |
! |
21 |
! "Opt'n Path" is free software: you can redistribute it and/or modify |
22 |
! it under the terms of the GNU Affero General Public License as |
23 |
! published by the Free Software Foundation, either version 3 of the License, |
24 |
! or (at your option) any later version. |
25 |
! |
26 |
! "Opt'n Path" is distributed in the hope that it will be useful, |
27 |
! but WITHOUT ANY WARRANTY; without even the implied warranty of |
28 |
! |
29 |
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
30 |
! GNU Affero General Public License for more details. |
31 |
! |
32 |
! You should have received a copy of the GNU Affero General Public License |
33 |
! along with "Opt'n Path". If not, see <http://www.gnu.org/licenses/>. |
34 |
! |
35 |
! Contact The Office of Technology Licensing, valorisation@ens-lyon.fr, |
36 |
! for commercial licensing opportunities. |
37 |
!---------------------------------------------------------------------- |
38 |
|
39 |
use Io_module |
40 |
|
41 |
IMPLICIT NONE |
42 |
|
43 |
INTEGER(KINT) :: NCoord |
44 |
REAL(KREAL) :: Geom_new(NCoord), Grad(NCoord), Hess(NCoord*NCoord) |
45 |
REAL(KREAL), INTENT(IN) :: Geom(NCoord) |
46 |
REAL(KREAL) :: HEAT ! HEAT= Energy |
47 |
LOGICAL :: FRST |
48 |
|
49 |
! MRESET = maximum number of iterations. |
50 |
INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
51 |
REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:), GradSet(:) ! MRESET*NCoord |
52 |
REAL(KREAL), ALLOCATABLE, SAVE :: DX(:), GSAVE(:) !NCoord |
53 |
REAL(KREAL), SAVE :: ESET(MRESET) |
54 |
REAL(KREAL) :: ESET_tmp(MRESET), B(M2),BS(M2),BST(M2), B_tmp(M2) ! M2=256 |
55 |
LOGICAL DEBUG, PRINT, ci_lt_zero |
56 |
INTEGER(KINT), SAVE :: MSET ! mth Iteration |
57 |
REAL(KREAL) :: ci(MRESET), ci_tmp(MRESET) ! MRESET = maximum number of iterations. |
58 |
INTEGER(KINT) :: NGEDIIS, MPLUS, INV, ITERA, MM, cis_zero |
59 |
INTEGER(KINT) :: I, J, K, JJ, JNV, II, IONE, IJ, IX, JX, KX |
60 |
INTEGER(KINT) :: current_size_B_mat, MyPointer |
61 |
REAL(KREAL) :: XMax, XNorm, DET, THRES, tmp, ER_star, ER_star_tmp |
62 |
|
63 |
DEBUG=.TRUE. |
64 |
PRINT=.FALSE. |
65 |
|
66 |
IF (PRINT) WRITE(*,'(/,'' BEGIN GEDIIS '')') |
67 |
|
68 |
! Initialization |
69 |
IF (FRST) THEN |
70 |
! FRST will be set to False in SPACE_GEDIIS, so no need to modify it here |
71 |
IF (ALLOCATED(GeomSet)) THEN |
72 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GEDIIS Dealloc '')') |
73 |
DEALLOCATE(GeomSet,GradSet,DX,GSave) |
74 |
RETURN |
75 |
ELSE |
76 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GEDIIS Alloc '')') |
77 |
ALLOCATE(GeomSet(MRESET*NCoord),GradSet(MRESET*NCoord),DX(NCoord),GSAVE(NCoord)) |
78 |
END IF |
79 |
END IF ! IF (FRST) THEN |
80 |
|
81 |
! SPACE_GEDIIS SIMPLY LOADS THE CURRENT VALUES OF Geom AND Grad INTO THE ARRAYS GeomSet |
82 |
! AND GradSet, MSET is set to zero and then 1 in SPACE_GEDIIS at first iteration. |
83 |
CALL SPACE_GEDIIS(MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST) |
84 |
|
85 |
IF (PRINT) WRITE(*,'(/,'' GEDIIS after SPACE_GEDIIS '')') |
86 |
|
87 |
! INITIALIZE SOME VARIABLES AND CONSTANTS: |
88 |
NGEDIIS = MSET !MSET=mth iteration |
89 |
MPLUS = MSET + 1 |
90 |
MM = MPLUS * MPLUS |
91 |
|
92 |
! CONSTRUCT THE GEDIIS MATRIX: |
93 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)> |
94 |
JJ=0 |
95 |
INV=-NCoord |
96 |
DO I=1,MSET |
97 |
INV=INV+NCoord |
98 |
JNV=-NCoord |
99 |
DO J=1,MSET |
100 |
JNV=JNV+NCoord |
101 |
JJ = JJ + 1 |
102 |
B(JJ)=0.D0 |
103 |
DO K=1, NCoord |
104 |
B(JJ) = B(JJ) + (((GradSet(INV+K)-GradSet(JNV+K))*(GeomSet(INV+K)-GeomSet(JNV+K)))/2.D0) |
105 |
END DO |
106 |
END DO |
107 |
END DO |
108 |
|
109 |
! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
110 |
! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
111 |
DO I=MSET-1,1,-1 |
112 |
DO J=MSET,1,-1 |
113 |
B(I*MSET+J+I) = B(I*MSET+J) |
114 |
END DO |
115 |
END DO |
116 |
|
117 |
! for last row and last column of GEDIIS matrix |
118 |
DO I=1,MPLUS |
119 |
B(MPLUS*I) = 1.D0 |
120 |
B(MPLUS*MSET+I) = 1.D0 |
121 |
END DO |
122 |
B(MM) = 0.D0 |
123 |
|
124 |
DO I=1, MPLUS |
125 |
!WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
126 |
END DO |
127 |
|
128 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
129 |
80 CONTINUE |
130 |
DO I=1,MM !MM = (MSET+1) * (MSET+1) |
131 |
BS(I) = B(I) !just a copy of the original B (GEDIIS) matrix |
132 |
END DO |
133 |
|
134 |
IF (NGEDIIS .NE. MSET) THEN |
135 |
DO II=1,MSET-NGEDIIS |
136 |
XMAX = -1.D10 |
137 |
ITERA = 0 |
138 |
DO I=1,MSET |
139 |
XNORM = 0.D0 |
140 |
INV = (I-1) * MPLUS |
141 |
DO J=1,MSET |
142 |
XNORM = XNORM + ABS(B(INV + J)) |
143 |
END DO |
144 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
145 |
XMAX = XNORM |
146 |
ITERA = I |
147 |
IONE = INV + I |
148 |
ENDIF |
149 |
END DO |
150 |
|
151 |
DO I=1,MPLUS |
152 |
INV = (I-1) * MPLUS |
153 |
DO J=1,MPLUS |
154 |
JNV = (J-1) * MPLUS |
155 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
156 |
B(JNV + I) = B(INV + J) |
157 |
END DO |
158 |
END DO |
159 |
B(IONE) = 1.0D0 |
160 |
END DO |
161 |
END IF ! matches IF (NGEDIIS .NE. MSET) THEN |
162 |
|
163 |
! SCALE GEDIIS MATRIX BEFORE INVERSION: |
164 |
DO I=1,MPLUS |
165 |
II = MPLUS * (I-1) + I ! B(II)=diagonal elements of B matrix |
166 |
GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
167 |
!Print *, 'GSAVE(',I,')=', GSAVE(I) |
168 |
END DO |
169 |
GSAVE(MPLUS) = 1.D0 |
170 |
DO I=1,MPLUS |
171 |
DO J=1,MPLUS |
172 |
IJ = MPLUS * (I-1) + J |
173 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
174 |
END DO |
175 |
END DO |
176 |
|
177 |
! INVERT THE GEDIIS MATRIX B: |
178 |
DO I=1, MPLUS |
179 |
!WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
180 |
END DO |
181 |
|
182 |
CALL MINV(B,MPLUS,DET) ! matrix inversion. |
183 |
|
184 |
DO I=1, MPLUS |
185 |
!WRITE(*,'(10(1X,F20.16))') B((I-1)*MPLUS+1:I*(MPLUS)) |
186 |
END DO |
187 |
|
188 |
DO I=1,MPLUS |
189 |
DO J=1,MPLUS |
190 |
IJ = MPLUS * (I-1) + J |
191 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
192 |
END DO |
193 |
END DO |
194 |
|
195 |
! COMPUTE THE NEW INTERPOLATED PARAMETER VECTOR (Geometry): |
196 |
ci=0.d0 |
197 |
ci_tmp=0.d0 |
198 |
|
199 |
ci_lt_zero= .FALSE. |
200 |
DO I=1, MSET |
201 |
DO J=1, MSET ! B matrix is read column-wise |
202 |
ci(I)=ci(I)+B((J-1)*(MPLUS)+I)*ESET(J) !ESET is energy set, yet to be fixed. |
203 |
END DO |
204 |
ci(I)=ci(I)+B((MPLUS-1)*(MPLUS)+I) |
205 |
!Print *, 'NO ci < 0 yet, c(',I,')=', ci(I) |
206 |
IF((ci(I) .LT. 0.0D0) .OR. (ci(I) .GT. 1.0D0)) THEN |
207 |
ci_lt_zero=.TRUE. |
208 |
EXIT |
209 |
END IF |
210 |
END DO !matches DO I=1, MSET |
211 |
|
212 |
IF (ci_lt_zero) Then |
213 |
cis_zero = 0 |
214 |
ER_star = 0.D0 |
215 |
ER_star_tmp = 1e32 |
216 |
|
217 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
218 |
JJ=0 |
219 |
INV=-NCoord |
220 |
DO IX=1,MSET |
221 |
INV=INV+NCoord |
222 |
JNV=-NCoord |
223 |
DO JX=1,MSET |
224 |
JNV=JNV+NCoord |
225 |
JJ = JJ + 1 |
226 |
BST(JJ)=0.D0 |
227 |
DO KX=1, NCoord |
228 |
BST(JJ) = BST(JJ) + (((GradSet(INV+KX)-GradSet(JNV+KX))*(GeomSet(INV+KX)-GeomSet(JNV+KX)))/2.D0) |
229 |
END DO |
230 |
END DO |
231 |
END DO |
232 |
|
233 |
DO I=1, (2**MSET)-2 ! all (2**MSET)-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
234 |
ci(:)=1.D0 |
235 |
! find out which cis are zero in I: |
236 |
DO IX=1, MSET |
237 |
JJ=IAND(I, 2**(IX-1)) |
238 |
IF(JJ .EQ. 0) Then |
239 |
ci(IX)=0.D0 |
240 |
END IF |
241 |
END DO |
242 |
|
243 |
ci_lt_zero = .FALSE. |
244 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
245 |
DO IX=1, MSET*MSET |
246 |
B(IX) = BST(IX) !just a copy of the original B (GEDIIS) matrix |
247 |
END DO |
248 |
|
249 |
! Removal of KXth row and KXth column in order to accomodate cI to be zero: |
250 |
current_size_B_mat=MSET |
251 |
cis_zero = 0 |
252 |
! The bits of I (index of the upper loop 'DO I=1, (2**MSET)-2'), gives which cis are zero. |
253 |
DO KX=1, MSET ! searching for each bit of I (index of the upper loop 'DO I=1, (2**MSET)-2') |
254 |
IF (ci(KX) .EQ. 0.D0) Then !remove KXth row and KXth column |
255 |
cis_zero = cis_zero + 1 |
256 |
|
257 |
! First row removal: (B matrix is read column-wise) |
258 |
JJ=0 |
259 |
DO IX=1,current_size_B_mat ! columns reading |
260 |
DO JX=1,current_size_B_mat ! rows reading |
261 |
IF (JX .NE. KX) Then |
262 |
JJ = JJ + 1 |
263 |
B_tmp(JJ) = B((IX-1)*current_size_B_mat+JX) |
264 |
END IF |
265 |
END DO |
266 |
END DO |
267 |
|
268 |
DO IX=1,current_size_B_mat*(current_size_B_mat-1) |
269 |
B(IX) = B_tmp(IX) |
270 |
END DO |
271 |
|
272 |
! Now column removal: |
273 |
JJ=0 |
274 |
DO IX=1,KX-1 ! columns reading |
275 |
DO JX=1,current_size_B_mat-1 ! rows reading |
276 |
JJ = JJ + 1 |
277 |
B_tmp(JJ) = B(JJ) |
278 |
END DO |
279 |
END DO |
280 |
|
281 |
DO IX=KX+1,current_size_B_mat |
282 |
DO JX=1,current_size_B_mat-1 |
283 |
JJ = JJ + 1 |
284 |
B_tmp(JJ) = B(JJ+current_size_B_mat-1) |
285 |
END DO |
286 |
END DO |
287 |
|
288 |
DO IX=1,(current_size_B_mat-1)*(current_size_B_mat-1) |
289 |
B(IX) = B_tmp(IX) |
290 |
END DO |
291 |
current_size_B_mat = current_size_B_mat - 1 |
292 |
END IF ! matches IF (ci(KX) .EQ. 0.D0) Then !remove |
293 |
END DO ! matches DO KX=1, MSET |
294 |
|
295 |
! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
296 |
! The correction is needed because the last coloumn and row of the matrix contains all 1 and one zero. |
297 |
DO IX=MSET-cis_zero-1,1,-1 |
298 |
DO JX=MSET-cis_zero,1,-1 |
299 |
B(IX*(MSET-cis_zero)+JX+IX) = B(IX*(MSET-cis_zero)+JX) |
300 |
END DO |
301 |
END DO |
302 |
|
303 |
! for last row and last column of GEDIIS matrix |
304 |
DO IX=1,MPLUS-cis_zero |
305 |
B((MPLUS-cis_zero)*IX) = 1.D0 |
306 |
B((MPLUS-cis_zero)*(MSET-cis_zero)+IX) = 1.D0 |
307 |
END DO |
308 |
B((MPLUS-cis_zero) * (MPLUS-cis_zero)) = 0.D0 |
309 |
|
310 |
DO IX=1, MPLUS |
311 |
!WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
312 |
END DO |
313 |
|
314 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
315 |
IF (NGEDIIS .NE. MSET) THEN |
316 |
JX = min(MSET-NGEDIIS,MSET-cis_zero-1) |
317 |
DO II=1,JX |
318 |
XMAX = -1.D10 |
319 |
ITERA = 0 |
320 |
DO IX=1,MSET-cis_zero |
321 |
XNORM = 0.D0 |
322 |
INV = (IX-1) * (MPLUS-cis_zero) |
323 |
DO J=1,MSET-cis_zero |
324 |
XNORM = XNORM + ABS(B(INV + J)) |
325 |
END DO |
326 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
327 |
XMAX = XNORM |
328 |
ITERA = IX |
329 |
IONE = INV + IX |
330 |
ENDIF |
331 |
END DO |
332 |
|
333 |
DO IX=1,MPLUS-cis_zero |
334 |
INV = (IX-1) * (MPLUS-cis_zero) |
335 |
DO J=1,MPLUS-cis_zero |
336 |
JNV = (J-1) * (MPLUS-cis_zero) |
337 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
338 |
B(JNV + IX) = B(INV + J) |
339 |
END DO |
340 |
END DO |
341 |
B(IONE) = 1.0D0 |
342 |
END DO |
343 |
END IF ! matches IF (NGEDIIS .NE. MSET) THEN |
344 |
|
345 |
! SCALE GEDIIS MATRIX BEFORE INVERSION: |
346 |
DO IX=1,MPLUS-cis_zero |
347 |
II = (MPLUS-cis_zero) * (IX-1) + IX ! B(II)=diagonal elements of B matrix |
348 |
GSAVE(IX) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
349 |
END DO |
350 |
GSAVE(MPLUS-cis_zero) = 1.D0 |
351 |
DO IX=1,MPLUS-cis_zero |
352 |
DO JX=1,MPLUS-cis_zero |
353 |
IJ = (MPLUS-cis_zero) * (IX-1) + JX |
354 |
B(IJ) = B(IJ) * GSAVE(IX) * GSAVE(JX) |
355 |
END DO |
356 |
END DO |
357 |
|
358 |
! INVERT THE GEDIIS MATRIX B: |
359 |
CALL MINV(B,MPLUS-cis_zero,DET) ! matrix inversion. |
360 |
|
361 |
DO IX=1,MPLUS-cis_zero |
362 |
DO JX=1,MPLUS-cis_zero |
363 |
IJ = (MPLUS-cis_zero) * (IX-1) + JX |
364 |
B(IJ) = B(IJ) * GSAVE(IX) * GSAVE(JX) |
365 |
END DO |
366 |
END DO |
367 |
|
368 |
DO IX=1, MPLUS |
369 |
!WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
370 |
END DO |
371 |
|
372 |
! ESET is rearranged to handle zero cis and stored in ESET_tmp: |
373 |
JJ=0 |
374 |
DO IX=1, MSET |
375 |
IF (ci(IX) .NE. 0) Then |
376 |
JJ=JJ+1 |
377 |
ESET_tmp(JJ) = ESET(IX) |
378 |
END IF |
379 |
END DO |
380 |
|
381 |
! DETERMINATION OF nonzero cis: |
382 |
MyPointer=1 |
383 |
DO IX=1, MSET-cis_zero |
384 |
tmp = 0.D0 |
385 |
DO J=1, MSET-cis_zero ! B matrix is read column-wise |
386 |
tmp=tmp+B((J-1)*(MPLUS-cis_zero)+IX)*ESET_tmp(J) |
387 |
END DO |
388 |
tmp=tmp+B((MPLUS-cis_zero-1)*(MPLUS-cis_zero)+IX) |
389 |
IF((tmp .LT. 0.0D0) .OR. (tmp .GT. 1.0D0)) THEN |
390 |
ci_lt_zero=.TRUE. |
391 |
EXIT |
392 |
ELSE |
393 |
DO JX=MyPointer,MSET |
394 |
IF (ci(JX) .NE. 0) Then |
395 |
ci(JX) = tmp |
396 |
MyPointer=JX+1 |
397 |
EXIT |
398 |
END IF |
399 |
END DO |
400 |
END IF |
401 |
END DO !matches DO I=1, MSET-cis_zero |
402 |
!Print *, 'Local set of cis, first 10:, MSET=', MSET, ', I of (2**MSET)-2=', I |
403 |
!WRITE(*,'(10(1X,F20.4))') ci(1:MSET) |
404 |
!Print *, 'Local set of cis ends:****************************************' |
405 |
|
406 |
! new set of cis determined based on the lower energy (ER_star): |
407 |
IF (.NOT. ci_lt_zero) Then |
408 |
Call Energy_GEDIIS(MRESET,MSET,ci,GeomSet,GradSet,ESET,NCoord,ER_star) |
409 |
IF (ER_star .LT. ER_star_tmp) Then |
410 |
ci_tmp=ci |
411 |
ER_star_tmp = ER_star |
412 |
END IF |
413 |
END IF ! matches IF (.NOT. ci_lt_zero) Then |
414 |
END DO !matches DO I=1, (2**K)-2 ! all (2**K)-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
415 |
ci = ci_tmp |
416 |
END IF! matches IF (ci_lt_zero) Then |
417 |
|
418 |
Print *, 'Final set of cis, first 10:***********************************' |
419 |
WRITE(*,'(10(1X,F20.4))') ci(1:MSET) |
420 |
Print *, 'Final set of cis ends:****************************************' |
421 |
Geom_new(:) = 0.D0 |
422 |
DO I=1, MSET |
423 |
Geom_new(:) = Geom_new(:) + (ci(I)*GeomSet((I-1)*NCoord+1:I*NCoord)) !MPLUS=MSET+1 |
424 |
! R_(N+1)=R*+DeltaR: |
425 |
DO J=1, NCoord |
426 |
tmp=0.D0 |
427 |
DO K=1,NCoord |
428 |
!tmp=tmp+Hess((J-1)*NCoord+K)*GradSet((I-1)*NCoord+K) ! If Hinv=.False., then we need to invert Hess |
429 |
END DO |
430 |
Geom_new(J) = Geom_new(J) - (ci(I)*tmp) |
431 |
END DO |
432 |
END DO |
433 |
|
434 |
DX(:) = Geom(:) - Geom_new(:) |
435 |
|
436 |
XNORM = SQRT(DOT_PRODUCT(DX,DX)) |
437 |
IF (PRINT) THEN |
438 |
WRITE (6,'(/10X,''DEVIATION IN X '',F10.4,8X,''DETERMINANT '',G9.3)') XNORM, DET |
439 |
!WRITE(*,'(10X,''GEDIIS COEFFICIENTS'')') |
440 |
!WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET) |
441 |
ENDIF |
442 |
|
443 |
! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
444 |
THRES = MAX(10.D0**(-NCoord), 1.D-25) |
445 |
IF (XNORM.GT.2.D0 .OR. DABS(DET) .LT. THRES) THEN |
446 |
IF (PRINT)THEN |
447 |
WRITE(*,*) "THE GEDIIS MATRIX IS ILL CONDITIONED" |
448 |
WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
449 |
WRITE(*,*) "THE GEDIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
450 |
END IF |
451 |
DO K=1,MM |
452 |
B(K) = BS(K) ! why this is reverted? Because "IF (NGEDIIS .GT. 0) GO TO 80", see below |
453 |
END DO |
454 |
NGEDIIS = NGEDIIS - 1 |
455 |
IF (NGEDIIS .GT. 0) GO TO 80 |
456 |
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
457 |
Geom_new(:) = Geom(:) ! Geom_new is set to original Geom, thus DX = Geom(:) - Geom_new(:)=zero |
458 |
END IF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
459 |
|
460 |
!******************************************************************************************************************* |
461 |
Geom_new(:) = 0.D0 |
462 |
DO I=1, MSET |
463 |
Geom_new(:) = Geom_new(:) + (ci(I)*GeomSet((I-1)*NCoord+1:I*NCoord)) !MPLUS=MSET+1 |
464 |
! R_(N+1)=R*+DeltaR: |
465 |
DO J=1, NCoord |
466 |
tmp=0.D0 |
467 |
DO K=1,NCoord |
468 |
tmp=tmp+Hess((J-1)*NCoord+K)*GradSet((I-1)*NCoord+K) ! If Hinv=.False., then we need to invert Hess |
469 |
END DO |
470 |
Geom_new(J) = Geom_new(J) - (ci(I)*tmp) |
471 |
END DO |
472 |
END DO |
473 |
!******************************************************************************************************************* |
474 |
|
475 |
IF (PRINT) WRITE(*,'(/,'' END GEDIIS '',/)') |
476 |
|
477 |
END SUBROUTINE Step_GEDIIS |
478 |
|