root / src / Step_DIIS.f90
Historique | Voir | Annoter | Télécharger (11,77 ko)
1 |
!C HEAT is never used, not even in call of Space(...) |
---|---|
2 |
!C XPARAM = input parameter vector (Geometry). |
3 |
!C Grad = input gradient vector. |
4 |
SUBROUTINE Step_DIIS(XP,XPARAM,GP,GRAD,HP,HEAT,Hess,NVAR,FRST) |
5 |
|
6 |
!---------------------------------------------------------------------- |
7 |
! This routine was adapted from the public domain mopac6 diis.f |
8 |
! source file (c) 2009, Stewart Computational Chemistry. |
9 |
! <http://www.openmopac.net/Downloads/Downloads.html> |
10 |
! |
11 |
!---------------------------------------------------------------------- |
12 |
! Copyright 2003-2014 Ecole Normale Supérieure de Lyon, |
13 |
! Centre National de la Recherche Scientifique, |
14 |
! Université Claude Bernard Lyon 1. All rights reserved. |
15 |
! |
16 |
! This work is registered with the Agency for the Protection of Programs |
17 |
! as IDDN.FR.001.100009.000.S.P.2014.000.30625 |
18 |
! |
19 |
! Authors: P. Fleurat-Lessard, P. Dayal |
20 |
! Contact: optnpath@gmail.com |
21 |
! |
22 |
! This file is part of "Opt'n Path". |
23 |
! |
24 |
! "Opt'n Path" is free software: you can redistribute it and/or modify |
25 |
! it under the terms of the GNU Affero General Public License as |
26 |
! published by the Free Software Foundation, either version 3 of the License, |
27 |
! or (at your option) any later version. |
28 |
! |
29 |
! "Opt'n Path" is distributed in the hope that it will be useful, |
30 |
! but WITHOUT ANY WARRANTY; without even the implied warranty of |
31 |
! |
32 |
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
33 |
! GNU Affero General Public License for more details. |
34 |
! |
35 |
! You should have received a copy of the GNU Affero General Public License |
36 |
! along with "Opt'n Path". If not, see <http://www.gnu.org/licenses/>. |
37 |
! |
38 |
! Contact The Office of Technology Licensing, valorisation@ens-lyon.fr, |
39 |
! for commercial licensing opportunities. |
40 |
!---------------------------------------------------------------------- |
41 |
|
42 |
IMPLICIT NONE |
43 |
integer, parameter :: KINT = kind(1) |
44 |
integer, parameter :: KREAL = kind(1.0d0) |
45 |
|
46 |
! INCLUDE 'SIZES' |
47 |
|
48 |
INTEGER(KINT) :: NVAR |
49 |
REAL(KREAL) :: XP(NVAR), XPARAM(NVAR), GP(NVAR), GRAD(NVAR), Hess(NVAR*NVAR) |
50 |
!REAL(KREAL) :: Hess_inv(NVAR,NVAR),XPARAM_old(NVAR),STEP(NVAR) |
51 |
REAL(KREAL) :: HEAT, HP |
52 |
LOGICAL :: FRST |
53 |
|
54 |
!************************************************************************ |
55 |
!* * |
56 |
!* DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE * |
57 |
!* * |
58 |
!* THIS INVOLVES SOLVING FOR C IN XPARAM(NEW) = XPARAM' - HG' * |
59 |
!* * |
60 |
!* WHERE XPARAM' = SUM(C(I)XPARAM(I), THE C COEFFICIENTES COMING FROM * |
61 |
!* * |
62 |
!* | B 1 | . | C | = | 0 | * |
63 |
!* | 1 0 | |-L | | 1 | * |
64 |
!* * |
65 |
!* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J) GRAD(I) = GRADIENT ON CYCLE I * |
66 |
!* Hess = INVERSE HESSIAN * |
67 |
!* * |
68 |
!* REFERENCE * |
69 |
!* * |
70 |
!* P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984) * |
71 |
!* * |
72 |
!************************************************************************ |
73 |
!************************************************************************ |
74 |
!* * |
75 |
!* GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN * |
76 |
!* THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER * |
77 |
!* (A VARIABLE METRIC METHOD) * |
78 |
!* * |
79 |
!* WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA * |
80 |
!* * |
81 |
!* REFERENCE * |
82 |
!* * |
83 |
!* "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM * |
84 |
!* GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL * |
85 |
!* LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10, * |
86 |
!* 939-950 (1989). * |
87 |
!* * |
88 |
!* MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS * |
89 |
!* * |
90 |
!************************************************************************ |
91 |
|
92 |
! MRESET = number of iterations. |
93 |
INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
94 |
REAL(KREAL), ALLOCATABLE, SAVE :: XSET(:),GSET(:),ERR(:) ! MRESET*NVAR |
95 |
REAL(KREAL) :: ESET(MRESET) |
96 |
REAL(KREAL), ALLOCATABLE, SAVE :: DX(:),GSAVE(:) !NVAR |
97 |
REAL(KREAL) :: B(M2), BS(M2) |
98 |
LOGICAL DEBUG, PRINT |
99 |
INTEGER(KINT), SAVE :: MSET |
100 |
INTEGER(KINT) :: NDIIS, MPLUS, INV, ITERA, MM |
101 |
INTEGER(KINT) :: I,J,K, JJ, KJ, JNV, II, IONE, IJ, INK,ITmp |
102 |
REAL(KREAL) :: XMax, XNorm, S, DET, THRES |
103 |
|
104 |
DEBUG=.TRUE. |
105 |
PRINT=.TRUE. |
106 |
|
107 |
IF (PRINT) WRITE(*,'(/,'' BEGIN GDIIS '')') |
108 |
|
109 |
!XPARAM_old = XPARAM |
110 |
|
111 |
! Initialization |
112 |
IF (FRST) THEN |
113 |
! FRST will be set to False in Space, so no need to modify it here |
114 |
IF (ALLOCATED(XSET)) THEN |
115 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS Dealloc '')') |
116 |
DEALLOCATE(XSet,GSET,ERR,DX,GSave) |
117 |
RETURN |
118 |
ELSE |
119 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS alloc '')') |
120 |
ALLOCATE(XSet(MRESET*NVAR), GSet(MRESET*NVAR), ERR(MRESET*NVAR)) |
121 |
ALLOCATE(DX(NVAR),GSAVE(NVAR)) |
122 |
END IF |
123 |
END IF |
124 |
!C |
125 |
!C SPACE SIMPLY LOADS THE CURRENT VALUES OF XPARAM AND GRAD INTO |
126 |
!C THE ARRAYS XSET AND GSET |
127 |
!C |
128 |
!C HEAT is never used, not even in Space(...) |
129 |
CALL SPACE(MRESET,MSET,XPARAM,GRAD,HEAT,NVAR,XSET,GSET,ESET,FRST) |
130 |
|
131 |
IF (PRINT) WRITE(*,'(/,'' GDIIS after Space '')') |
132 |
|
133 |
! INITIALIZE SOME VARIABLES AND CONSTANTS: |
134 |
NDIIS = MSET |
135 |
MPLUS = MSET + 1 |
136 |
MM = MPLUS * MPLUS |
137 |
|
138 |
! COMPUTE THE APPROXIMATE ERROR VECTORS: |
139 |
INV=-NVAR |
140 |
DO 30 I=1,MSET |
141 |
INV = INV + NVAR |
142 |
DO 30 J=1,NVAR |
143 |
S = 0.D0 |
144 |
KJ=(J*(J-1))/2 |
145 |
DO 10 K=1,J |
146 |
KJ = KJ+1 |
147 |
10 S = S - Hess(KJ) * GSET(INV+K) |
148 |
DO 20 K=J+1,NVAR |
149 |
KJ = (K*(K-1))/2+J |
150 |
20 S = S - Hess(KJ) * GSET(INV+K) |
151 |
30 ERR(INV+J) = S |
152 |
|
153 |
|
154 |
|
155 |
! CONSTRUCT THE GDIIS MATRIX: |
156 |
! initialization (not really needed) |
157 |
DO I=1,MM |
158 |
B(I) = 1.D0 |
159 |
END DO |
160 |
|
161 |
! B_ij calculations from <e_i|e_j> |
162 |
JJ=0 |
163 |
INV=-NVAR |
164 |
DO 50 I=1,MSET |
165 |
INV=INV+NVAR |
166 |
JNV=-NVAR |
167 |
DO 50 J=1,MSET |
168 |
JNV=JNV+NVAR |
169 |
JJ = JJ + 1 |
170 |
B(JJ)=0.D0 |
171 |
DO 50 K=1,NVAR |
172 |
50 B(JJ) = B(JJ) + ERR(INV+K) * ERR(JNV+K) |
173 |
|
174 |
! The following shifting is required to correct indices of B_ij elements in the GDIIS matrix. |
175 |
! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
176 |
DO 60 I=MSET-1,1,-1 |
177 |
DO 60 J=MSET,1,-1 |
178 |
60 B(I*MSET+J+I) = B(I*MSET+J) |
179 |
|
180 |
! For last row and last column of GDIIS matrix |
181 |
DO 70 I=1,MPLUS |
182 |
B(MPLUS*I) = 1.D0 |
183 |
70 B(MPLUS*MSET+I) = 1.D0 |
184 |
B(MM) = 0.D0 |
185 |
|
186 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
187 |
80 CONTINUE |
188 |
DO 90 I=1,MM |
189 |
90 BS(I) = B(I) |
190 |
IF (NDIIS .EQ. MSET) GO TO 140 |
191 |
DO 130 II=1,MSET-NDIIS |
192 |
XMAX = -1.D10 |
193 |
ITERA = 0 |
194 |
DO 110 I=1,MSET |
195 |
XNORM = 0.D0 |
196 |
INV = (I-1) * MPLUS |
197 |
DO 100 J=1,MSET |
198 |
100 XNORM = XNORM + ABS(B(INV + J)) |
199 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
200 |
XMAX = XNORM |
201 |
ITERA = I |
202 |
IONE = INV + I |
203 |
ENDIF |
204 |
110 CONTINUE |
205 |
DO 120 I=1,MPLUS |
206 |
INV = (I-1) * MPLUS |
207 |
DO 120 J=1,MPLUS |
208 |
JNV = (J-1) * MPLUS |
209 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
210 |
B(JNV + I) = B(INV + J) |
211 |
120 CONTINUE |
212 |
B(IONE) = 1.0D0 |
213 |
130 CONTINUE |
214 |
140 CONTINUE |
215 |
|
216 |
IF (DEBUG) THEN |
217 |
|
218 |
! OUTPUT THE GDIIS MATRIX: |
219 |
WRITE(*,'(/5X,'' GDIIS MATRIX'')') |
220 |
ITmp=min(12,MPLUS) |
221 |
DO IJ=1,MPLUS |
222 |
WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
223 |
END DO |
224 |
ENDIF |
225 |
|
226 |
! SCALE DIIS MATRIX BEFORE INVERSION: |
227 |
|
228 |
DO I=1,MPLUS |
229 |
II = MPLUS * (I-1) + I |
230 |
GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
231 |
END DO |
232 |
|
233 |
GSAVE(MPLUS) = 1.D0 |
234 |
DO I=1,MPLUS |
235 |
DO J=1,MPLUS |
236 |
IJ = MPLUS * (I-1) + J |
237 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
238 |
END DO |
239 |
END DO |
240 |
|
241 |
IF (DEBUG) THEN |
242 |
! OUTPUT SCALED GDIIS MATRIX: |
243 |
WRITE(*,'(/5X,'' GDIIS MATRIX (SCALED)'')') |
244 |
ITmp=min(12,MPLUS) |
245 |
DO IJ=1,MPLUS |
246 |
WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
247 |
END DO |
248 |
|
249 |
ENDIF ! matches IF (DEBUG) THEN |
250 |
|
251 |
! INVERT THE GDIIS MATRIX B: |
252 |
CALL MINV(B,MPLUS,DET) ! matrix inversion. |
253 |
|
254 |
DO I=1,MPLUS |
255 |
DO J=1,MPLUS |
256 |
IJ = MPLUS * (I-1) + J |
257 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
258 |
END DO |
259 |
END DO |
260 |
|
261 |
! COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT VECTORS: |
262 |
DO K=1,NVAR |
263 |
XP(K) = 0.D0 |
264 |
GP(K) = 0.D0 |
265 |
DO I=1,MSET |
266 |
INK = (I-1) * NVAR + K |
267 |
!Print *, 'B(',MPLUS*MSET+I,')=', B(MPLUS*MSET+I) |
268 |
XP(K) = XP(K) + B(MPLUS*MSET+I) * XSET(INK) |
269 |
GP(K) = GP(K) + B(MPLUS*MSET+I) * GSET(INK) |
270 |
END DO |
271 |
END DO |
272 |
|
273 |
HP=0.D0 |
274 |
DO I=1,MSET |
275 |
HP=HP+B(MPLUS*MSET+I)*ESET(I) |
276 |
END DO |
277 |
|
278 |
DO K=1,NVAR |
279 |
DX(K) = XPARAM(K) - XP(K) |
280 |
END DO |
281 |
XNORM = SQRT(DOT_PRODUCT(DX,DX)) |
282 |
IF (PRINT) THEN |
283 |
WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',G9.3)') XNORM,DET |
284 |
WRITE(*,'(10X,''GDIIS COEFFICIENTS'')') |
285 |
WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET) |
286 |
ENDIF |
287 |
|
288 |
! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
289 |
THRES = MAX(10.D0**(-NVAR), 1.D-25) |
290 |
IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
291 |
IF (PRINT)THEN |
292 |
WRITE(*,*) "THE DIIS MATRIX IS ILL CONDITIONED" |
293 |
WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
294 |
WRITE(*,*) "THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
295 |
END IF |
296 |
DO K=1,MM |
297 |
B(K) = BS(K) |
298 |
END DO |
299 |
NDIIS = NDIIS - 1 |
300 |
IF (NDIIS .GT. 0) GO TO 80 |
301 |
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
302 |
DO K=1,NVAR |
303 |
XP(K) = XPARAM(K) |
304 |
GP(K) = GRAD(K) |
305 |
END DO |
306 |
ENDIF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
307 |
|
308 |
! q_{m+1} = q'_{m+1} - H^{-1}g'_{m+1} |
309 |
! Hess is a symmetric matrix. |
310 |
!Hess_inv = 1.d0 ! to be deleted. |
311 |
!Call GenInv(NVAR,Reshape(Hess,(/NVAR,NVAR/)),Hess_inv,NVAR) ! Implemented in Mat_util.f90 |
312 |
! H^{-1}g'_{m+1} |
313 |
!Print *, 'Hess_inv=' |
314 |
!Print *, Hess_inv |
315 |
!XPARAM=0.d0 |
316 |
!DO I=1, NVAR |
317 |
!XPARAM(:) = XPARAM(:) + Hess_inv(:,I)*GP(I) |
318 |
!END DO |
319 |
!XPARAM(:) = XP(:) - XPARAM(:) ! now XPARAM is a new geometry. |
320 |
|
321 |
!STEP is the difference between the new and old geometry and thus "step": |
322 |
!STEP = XPARAM - XPARAM_old |
323 |
|
324 |
IF (PRINT) WRITE(*,'(/,'' END GDIIS '',/)') |
325 |
|
326 |
END SUBROUTINE Step_DIIS |