root / src / Rotation_matrix.f90
Historique | Voir | Annoter | Télécharger (3,68 ko)
1 |
subroutine rotation_matrix(q, U) |
---|---|
2 |
!----------------------------------------------------------------------- |
3 |
! This subroutine constructs rotation matrix U from quaternion q. |
4 |
!----------------------------------------------------------------------- |
5 |
! This subroutine calculates RMSD using quaternions. |
6 |
! It is based on the F90 routine bu E. Coutsias |
7 |
! http://www.math.unm.edu/~vageli/homepage.html |
8 |
! I (PFL) have just translated it, and I have changed the diagonalization |
9 |
! subroutine. |
10 |
! I also made some changes to make it suitable for Cart package. |
11 |
!---------------------------------------------------------------------- |
12 |
!---------------------------------------------------------------------- |
13 |
! Copyright (C) 2004, 2005 Chaok Seok, Evangelos Coutsias and Ken Dill |
14 |
! UCSF, Univeristy of New Mexico, Seoul National University |
15 |
! Witten by Chaok Seok and Evangelos Coutsias 2004. |
16 |
|
17 |
! This library is free software; you can redistribute it and/or |
18 |
! modify it under the terms of the GNU Lesser General Public |
19 |
! License as published by the Free Software Foundation; either |
20 |
! version 2.1 of the License, or (at your option) any later version. |
21 |
! |
22 |
! This library is distributed in the hope that it will be useful, |
23 |
! but WITHOUT ANY WARRANTY; without even the implied warranty of |
24 |
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
25 |
! Lesser General Public License for more details. |
26 |
! |
27 |
! You should have received a copy of the GNU Lesser General Public |
28 |
! License along with this library; if not, write to the Free Software |
29 |
! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
30 |
!---------------------------------------------------------------------------- |
31 |
!---------------------------------------------------------------------- |
32 |
! Copyright 2003-2014 Ecole Normale Supérieure de Lyon, |
33 |
! Centre National de la Recherche Scientifique, |
34 |
! Université Claude Bernard Lyon 1. All rights reserved. |
35 |
! |
36 |
! This work is registered with the Agency for the Protection of Programs |
37 |
! as IDDN.FR.001.100009.000.S.P.2014.000.30625 |
38 |
! |
39 |
! Authors: P. Fleurat-Lessard, P. Dayal |
40 |
! Contact: optnpath@gmail.com |
41 |
! |
42 |
! This file is part of "Opt'n Path". |
43 |
! |
44 |
! "Opt'n Path" is free software: you can redistribute it and/or modify |
45 |
! it under the terms of the GNU Affero General Public License as |
46 |
! published by the Free Software Foundation, either version 3 of the License, |
47 |
! or (at your option) any later version. |
48 |
! |
49 |
! "Opt'n Path" is distributed in the hope that it will be useful, |
50 |
! but WITHOUT ANY WARRANTY; without even the implied warranty of |
51 |
! |
52 |
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
53 |
! GNU Affero General Public License for more details. |
54 |
! |
55 |
! You should have received a copy of the GNU Affero General Public License |
56 |
! along with "Opt'n Path". If not, see <http://www.gnu.org/licenses/>. |
57 |
! |
58 |
! Contact The Office of Technology Licensing, valorisation@ens-lyon.fr, |
59 |
! for commercial licensing opportunities. |
60 |
!---------------------------------------------------------------------- |
61 |
|
62 |
Use VarTypes |
63 |
|
64 |
real(KREAL) :: q(4) |
65 |
real(KREAL) :: U(3,3) |
66 |
real(KREAL) :: q0,q1,q2,q3,b0,b1,b2,b3,q00,q01,q02,q03 |
67 |
REAL(KREAL) :: q11,q12,q13,q22,q23,q33 |
68 |
|
69 |
q0 = q(1) |
70 |
q1 = q(2) |
71 |
q2 = q(3) |
72 |
q3 = q(4) |
73 |
|
74 |
b0 = 2.0d0*q0 |
75 |
b1 = 2.0d0*q1 |
76 |
b2 = 2.0d0*q2 |
77 |
b3 = 2.0d0*q3 |
78 |
|
79 |
q00 = b0*q0-1.0d0 |
80 |
q01 = b0*q1 |
81 |
q02 = b0*q2 |
82 |
q03 = b0*q3 |
83 |
|
84 |
q11 = b1*q1 |
85 |
q12 = b1*q2 |
86 |
q13 = b1*q3 |
87 |
|
88 |
q22 = b2*q2 |
89 |
q23 = b2*q3 |
90 |
|
91 |
q33 = b3*q3 |
92 |
|
93 |
U(1,1) = q00+q11 |
94 |
U(1,2) = q12-q03 |
95 |
U(1,3) = q13+q02 |
96 |
|
97 |
U(2,1) = q12+q03 |
98 |
U(2,2) = q00+q22 |
99 |
U(2,3) = q23-q01 |
100 |
|
101 |
U(3,1) = q13-q02 |
102 |
U(3,2) = q23+q01 |
103 |
U(3,3) = q00+q33 |
104 |
|
105 |
end |