root / src / bib_oper.f90
Historique | Voir | Annoter | Télécharger (6,27 ko)
1 | 12 | pfleura2 | !---------------------------------------------------------------------- |
---|---|---|---|
2 | 12 | pfleura2 | ! Copyright 2003-2014 Ecole Normale Supérieure de Lyon, |
3 | 12 | pfleura2 | ! Centre National de la Recherche Scientifique, |
4 | 12 | pfleura2 | ! Université Claude Bernard Lyon 1. All rights reserved. |
5 | 12 | pfleura2 | ! |
6 | 12 | pfleura2 | ! This work is registered with the Agency for the Protection of Programs |
7 | 12 | pfleura2 | ! as IDDN.FR.001.100009.000.S.P.2014.000.30625 |
8 | 12 | pfleura2 | ! |
9 | 12 | pfleura2 | ! Authors: P. Fleurat-Lessard, P. Dayal |
10 | 12 | pfleura2 | ! Contact: optnpath@gmail.com |
11 | 12 | pfleura2 | ! |
12 | 12 | pfleura2 | ! This file is part of "Opt'n Path". |
13 | 12 | pfleura2 | ! |
14 | 12 | pfleura2 | ! "Opt'n Path" is free software: you can redistribute it and/or modify |
15 | 12 | pfleura2 | ! it under the terms of the GNU Affero General Public License as |
16 | 12 | pfleura2 | ! published by the Free Software Foundation, either version 3 of the License, |
17 | 12 | pfleura2 | ! or (at your option) any later version. |
18 | 12 | pfleura2 | ! |
19 | 12 | pfleura2 | ! "Opt'n Path" is distributed in the hope that it will be useful, |
20 | 12 | pfleura2 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of |
21 | 12 | pfleura2 | ! |
22 | 12 | pfleura2 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
23 | 12 | pfleura2 | ! GNU Affero General Public License for more details. |
24 | 12 | pfleura2 | ! |
25 | 12 | pfleura2 | ! You should have received a copy of the GNU Affero General Public License |
26 | 12 | pfleura2 | ! along with "Opt'n Path". If not, see <http://www.gnu.org/licenses/>. |
27 | 12 | pfleura2 | ! |
28 | 12 | pfleura2 | ! Contact The Office of Technology Licensing, valorisation@ens-lyon.fr, |
29 | 12 | pfleura2 | ! for commercial licensing opportunities. |
30 | 12 | pfleura2 | !---------------------------------------------------------------------- |
31 | 1 | pfleura2 | |
32 | 1 | pfleura2 | !================================================================ |
33 | 1 | pfleura2 | ! vecteur |
34 | 1 | pfleura2 | !================================================================ |
35 | 1 | pfleura2 | |
36 | 1 | pfleura2 | SUBROUTINE vecteur(n1,n2,x,y,z,vx,vy,vz,norm) |
37 | 1 | pfleura2 | |
38 | 1 | pfleura2 | use Path_module, only : NAt, KINT, KREAL |
39 | 1 | pfleura2 | |
40 | 1 | pfleura2 | |
41 | 1 | pfleura2 | integer(KINT) :: n1,n2 |
42 | 1 | pfleura2 | real(KREAL) :: x(Nat),y(Nat),z(Nat) |
43 | 1 | pfleura2 | real(KREAL) :: vx,vy,vz,norm |
44 | 1 | pfleura2 | |
45 | 1 | pfleura2 | vx=x(n2)-x(n1) |
46 | 1 | pfleura2 | vy=y(n2)-y(n1) |
47 | 1 | pfleura2 | vz=z(n2)-z(n1) |
48 | 1 | pfleura2 | |
49 | 1 | pfleura2 | !norm=dsqrt( vx*vx + vy*vy + vz*vz ) |
50 | 1 | pfleura2 | norm=sqrt( vx*vx + vy*vy + vz*vz ) |
51 | 1 | pfleura2 | |
52 | 1 | pfleura2 | ! write(6,*) |
53 | 1 | pfleura2 | ! write(6,*) vx,vy,vz,norm |
54 | 1 | pfleura2 | ! write(6,*) |
55 | 1 | pfleura2 | |
56 | 1 | pfleura2 | RETURN |
57 | 1 | pfleura2 | END |
58 | 1 | pfleura2 | |
59 | 1 | pfleura2 | !================================================================ |
60 | 1 | pfleura2 | ! angle |
61 | 1 | pfleura2 | !================================================================ |
62 | 1 | pfleura2 | |
63 | 1 | pfleura2 | FUNCTION angle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
64 | 1 | pfleura2 | |
65 | 1 | pfleura2 | |
66 | 12 | pfleura2 | use Path_module, only : Pi,KREAL |
67 | 1 | pfleura2 | |
68 | 1 | pfleura2 | real(KREAL) :: v1x,v1y,v1z,norm1 |
69 | 1 | pfleura2 | real(KREAL) :: v2x,v2y,v2z,norm2 |
70 | 1 | pfleura2 | real(KREAL) :: angle,ps |
71 | 1 | pfleura2 | |
72 | 1 | pfleura2 | ! write(6,*) |
73 | 1 | pfleura2 | ! write(6,*) v1x,v1y,v1z,norm1 |
74 | 1 | pfleura2 | ! write(6,*) v2x,v2y,v2z,norm2 |
75 | 1 | pfleura2 | ! write(6,*) |
76 | 1 | pfleura2 | IF (abs(norm1) .LT. 1.D-4) THEN |
77 | 12 | pfleura2 | STOP 'Angle: norm1 egale 0' |
78 | 1 | pfleura2 | ELSE IF (abs(norm2) .LT. 1.D-4) THEN |
79 | 12 | pfleura2 | STOP 'Angle: norm2 egale 0' |
80 | 1 | pfleura2 | ELSE |
81 | 1 | pfleura2 | ps=v1x*v2x+v1y*v2y+v1z*v2z |
82 | 1 | pfleura2 | angle=dacos(ps/(norm1*norm2))*180./Pi |
83 | 1 | pfleura2 | ENDIF |
84 | 1 | pfleura2 | |
85 | 1 | pfleura2 | RETURN |
86 | 1 | pfleura2 | END |
87 | 1 | pfleura2 | |
88 | 1 | pfleura2 | |
89 | 1 | pfleura2 | !================================================================ |
90 | 1 | pfleura2 | ! angle oriente (dihedre) |
91 | 1 | pfleura2 | !================================================================ |
92 | 1 | pfleura2 | |
93 | 1 | pfleura2 | FUNCTION angle_d(v1x,v1y,v1z,norm1, & |
94 | 1 | pfleura2 | v2x,v2y,v2z,norm2, & |
95 | 1 | pfleura2 | v3x,v3y,v3z,norm3) |
96 | 1 | pfleura2 | |
97 | 12 | pfleura2 | use Path_module, only : Pi, KREAL |
98 | 1 | pfleura2 | |
99 | 1 | pfleura2 | real(KREAL) :: v1x,v1y,v1z,norm1 |
100 | 1 | pfleura2 | real(KREAL) :: v2x,v2y,v2z,norm2 |
101 | 1 | pfleura2 | real(KREAL) :: v3x,v3y,v3z,norm3 |
102 | 1 | pfleura2 | real(KREAL) :: angle_d,ca,sa |
103 | 1 | pfleura2 | |
104 | 1 | pfleura2 | ! write(6,*) |
105 | 1 | pfleura2 | ! write(6,*) v1x,v1y,v1z,norm1 |
106 | 1 | pfleura2 | ! write(6,*) v2x,v2y,v2z,norm2 |
107 | 1 | pfleura2 | ! write(6,*) v3x,v3y,v3z,norm3 |
108 | 1 | pfleura2 | ! write(6,*) |
109 | 1 | pfleura2 | !Print *, 'Inside angle_d' |
110 | 1 | pfleura2 | IF (abs(norm1) .LT. 1.D-4) THEN |
111 | 12 | pfleura2 | STOP 'Angle_d: norm1 egale 0' |
112 | 1 | pfleura2 | ELSE IF (abs(norm2) .LT. 1.D-4) THEN |
113 | 12 | pfleura2 | STOP 'Angle_d: norm2 egale 0' |
114 | 1 | pfleura2 | ELSE IF (abs(norm3) .LT. 1.D-4) THEN |
115 | 12 | pfleura2 | STOP 'Angle_d: norm3 egale 0' |
116 | 1 | pfleura2 | ELSE |
117 | 1 | pfleura2 | ca=(v1x*v2x+v1y*v2y+v1z*v2z)/(norm1*norm2) |
118 | 1 | pfleura2 | sa=(v1x*(v2y*v3z-v2z*v3y) & |
119 | 1 | pfleura2 | -v1y*(v2x*v3z-v2z*v3x) & |
120 | 1 | pfleura2 | +v1z*(v2x*v3y-v2y*v3x)) & |
121 | 1 | pfleura2 | /(norm1*norm2*norm3) |
122 | 1 | pfleura2 | angle_d=datan2(sa,ca)*180./Pi |
123 | 1 | pfleura2 | ! write(*,*) sa,ca,angle_d,norm1,norm2,norm3 |
124 | 1 | pfleura2 | ENDIF |
125 | 1 | pfleura2 | !Print *, 'End of angle_d' |
126 | 1 | pfleura2 | RETURN |
127 | 1 | pfleura2 | END |
128 | 1 | pfleura2 | |
129 | 1 | pfleura2 | !================================================================ |
130 | 1 | pfleura2 | ! produit vectoriel |
131 | 1 | pfleura2 | !================================================================ |
132 | 1 | pfleura2 | |
133 | 2 | pfleura2 | SUBROUTINE produit_vect(v1x,v1y,v1z, & |
134 | 2 | pfleura2 | v2x,v2y,v2z, & |
135 | 1 | pfleura2 | v3x,v3y,v3z,norm3) |
136 | 1 | pfleura2 | |
137 | 7 | pfleura2 | use Path_module, only : KREAL |
138 | 1 | pfleura2 | |
139 | 2 | pfleura2 | real(KREAL) :: v1x,v1y,v1z ! what do you do with norm1, norm2??? |
140 | 2 | pfleura2 | real(KREAL) :: v2x,v2y,v2z |
141 | 1 | pfleura2 | real(KREAL) :: v3x,v3y,v3z,norm3 |
142 | 1 | pfleura2 | |
143 | 1 | pfleura2 | v3x= v1y*v2z-v1z*v2y |
144 | 1 | pfleura2 | v3y=-v1x*v2z+v1z*v2x |
145 | 1 | pfleura2 | v3z= v1x*v2y-v1y*v2x |
146 | 1 | pfleura2 | |
147 | 1 | pfleura2 | norm3=dsqrt( v3x*v3x + v3y*v3y + v3z*v3z ) |
148 | 1 | pfleura2 | |
149 | 1 | pfleura2 | |
150 | 1 | pfleura2 | RETURN |
151 | 1 | pfleura2 | END |
152 | 1 | pfleura2 | |
153 | 1 | pfleura2 | !================================================================ |
154 | 1 | pfleura2 | ! rotation suivant l axe x de phi tq a11=cos(phi) a12=sin(phi) |
155 | 1 | pfleura2 | !================================================================ |
156 | 1 | pfleura2 | |
157 | 1 | pfleura2 | SUBROUTINE rota_x(v1x,v1y,v1z,a11,a12) |
158 | 1 | pfleura2 | |
159 | 12 | pfleura2 | use Path_module, only : KREAL |
160 | 1 | pfleura2 | |
161 | 1 | pfleura2 | real(KREAL) :: v1x,v1y,v1z |
162 | 1 | pfleura2 | real(KREAL) :: v2x,v2y,v2z |
163 | 1 | pfleura2 | real(KREAL) :: a11,a12 |
164 | 1 | pfleura2 | |
165 | 1 | pfleura2 | v2x= v1x |
166 | 1 | pfleura2 | v2y= a11*v1y - a12*v1z |
167 | 1 | pfleura2 | v2z= a12*v1y + a11*v1z |
168 | 1 | pfleura2 | |
169 | 1 | pfleura2 | |
170 | 1 | pfleura2 | v1x=v2x |
171 | 1 | pfleura2 | v1y=v2y |
172 | 1 | pfleura2 | v1z=v2z |
173 | 1 | pfleura2 | |
174 | 1 | pfleura2 | |
175 | 1 | pfleura2 | RETURN |
176 | 1 | pfleura2 | END |
177 | 1 | pfleura2 | |
178 | 1 | pfleura2 | |
179 | 1 | pfleura2 | !================================================================ |
180 | 1 | pfleura2 | ! rotation suivant l axe y de phi tq a11=cos(phi) a12=sin(phi) |
181 | 1 | pfleura2 | !================================================================ |
182 | 1 | pfleura2 | |
183 | 1 | pfleura2 | SUBROUTINE rota_y(v1x,v1y,v1z,a11,a12) |
184 | 1 | pfleura2 | |
185 | 12 | pfleura2 | use Path_module, only : KREAL |
186 | 1 | pfleura2 | |
187 | 1 | pfleura2 | real(KREAL) :: v1x,v1y,v1z |
188 | 1 | pfleura2 | real(KREAL) :: v2x,v2y,v2z |
189 | 1 | pfleura2 | real(KREAL) :: a11,a12 |
190 | 1 | pfleura2 | |
191 | 1 | pfleura2 | v2x= a11*v1x - a12*v1z |
192 | 1 | pfleura2 | v2y= v1y |
193 | 1 | pfleura2 | v2z= a12*v1x + a11*v1z |
194 | 1 | pfleura2 | |
195 | 1 | pfleura2 | |
196 | 1 | pfleura2 | v1x=v2x |
197 | 1 | pfleura2 | v1y=v2y |
198 | 1 | pfleura2 | v1z=v2z |
199 | 1 | pfleura2 | |
200 | 1 | pfleura2 | |
201 | 1 | pfleura2 | RETURN |
202 | 1 | pfleura2 | END |
203 | 1 | pfleura2 | |
204 | 1 | pfleura2 | |
205 | 1 | pfleura2 | !================================================================ |
206 | 1 | pfleura2 | ! rotation suivant l axe z de phi tq a11=cos(phi) a12=sin(phi) |
207 | 1 | pfleura2 | !================================================================ |
208 | 1 | pfleura2 | |
209 | 1 | pfleura2 | SUBROUTINE rota_z(v1x,v1y,v1z,a11,a12) |
210 | 1 | pfleura2 | |
211 | 12 | pfleura2 | use Path_module, only : KREAL |
212 | 1 | pfleura2 | |
213 | 1 | pfleura2 | real(KREAL) :: v1x,v1y,v1z |
214 | 1 | pfleura2 | real(KREAL) :: v2x,v2y,v2z |
215 | 1 | pfleura2 | real(KREAL) :: a11,a12 |
216 | 1 | pfleura2 | |
217 | 1 | pfleura2 | v2x= a11*v1x - a12*v1y |
218 | 1 | pfleura2 | v2y= a12*v1x + a11*v1y |
219 | 1 | pfleura2 | v2z= v1z |
220 | 1 | pfleura2 | |
221 | 1 | pfleura2 | |
222 | 1 | pfleura2 | v1x=v2x |
223 | 1 | pfleura2 | v1y=v2y |
224 | 1 | pfleura2 | v1z=v2z |
225 | 1 | pfleura2 | |
226 | 1 | pfleura2 | RETURN |
227 | 1 | pfleura2 | END |